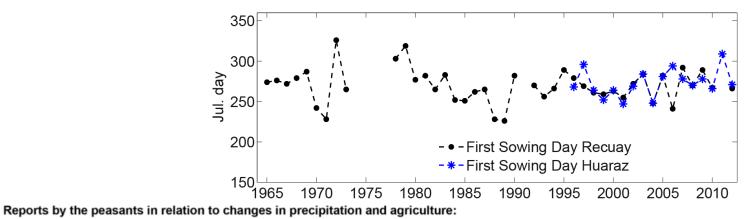
universität innsbruck

Autoridad Nacional del Agua

ÖSTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN

Agro-climatic observations in Huaraz, Peru – first insights from water, energy and carbon dioxide flux measurements


Lorenz Hänchen, Georg Wohlfahrt, Wolfgang Gurgiser, Fabien Maussion, Pierluigi Calanca, Alejo Cochachín Rapre, Rolando Cruz Encarnación and Fiorella Quiñonez Collas

Introduction: Motivation & Context

- Project AgroClim Huaraz (<u>www.agroclim-huaraz.info</u>) financed by the <u>Austrian Academy of Sciences</u> (ÖAW) in the frame of an <u>Earth System</u> <u>Sciences</u> call ("Water in Mountain Regions", 2018).
- Traditional (mostly rain-fed) farming increasingly threatened by climate and economic changes
- Disagreement between farmer's perception and (spatially and temporal limited) meteorological measurements
- Knowledge gap regarding both water demand and water availability to develop effective adaption strategies

Introduction: Motivation & Context

① In former times rainy season started in August.

② Waiting for the rain - if sowed earlier than the first rainfall, the crops might be hit by the frost or the drought.

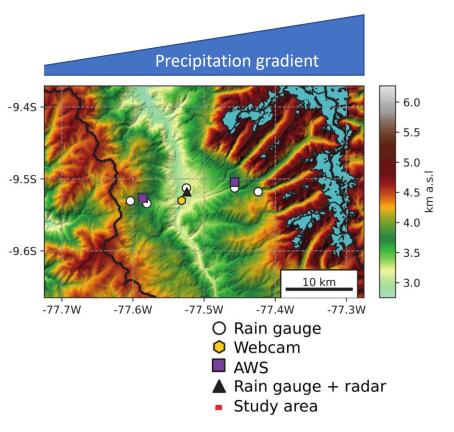
③ In former times the rainy season stopped in April. Nowadays it occasionally continues until June or July.

④ The period for sowing and harvesting depends on altitude, soil moisture and climate.

(5) Today, there is less rain than before. However, if it is raining it is a brief and heavy rain which destroys plants and the water disappears quickly. Consequently the people feel that there is less rain // they have to wait for the rain to return.

6 Ground frost, hail and heavy rains causing damages to the plants

- No trend in available precipitation records (here: theoretical Sowing Day due to first water availability after dry season)
- Perception of local farmers indicate climate-change induced threats to successful agriculture


Introduction: Project goals

- Water availability: Better quantify the recent variability and change of climate variables relevant for rainfed farming practices.
 - See EGU2020-19981 in the same session by Cornelia Klein et al. for more details on this!
- Water demand: Quantify crop water demand for a range of crops and agricultural management practices using in-situ observations and a comprehensive crop model.
- By merging this data and implementing it into a model framework we aim to adress agroclimatic research questions in the region. Finally, we aim to find a set of recommendations for the most resilient crops and farming practices for present and near-future climate conditions.

Methods: Region of Interest

- Complex topography west-east transect
- Semi-arid climate
- Strong east-west precipitation gradient and temperature gradient with altitude
- City of Huaraz in between
 Cordillera Blanca and Coordillera
 Negra mountain range
- Traditional farming practices based on experiences of generations of farmers

Methods

- Eddy Covariance to monitor evapotranspiration and net carbon dioxide exchange of a potato field
 - Measurements of exchange of energy and water between the biosphere and the atmosphere

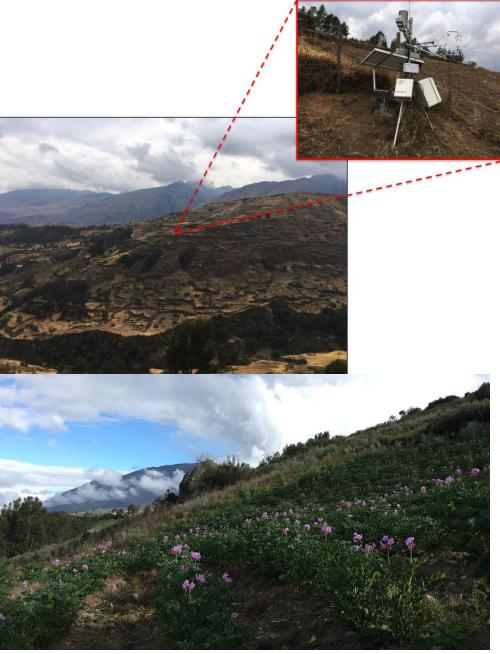
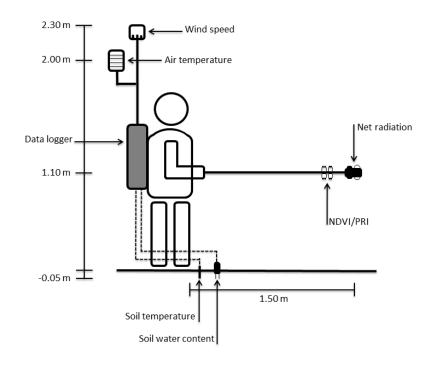
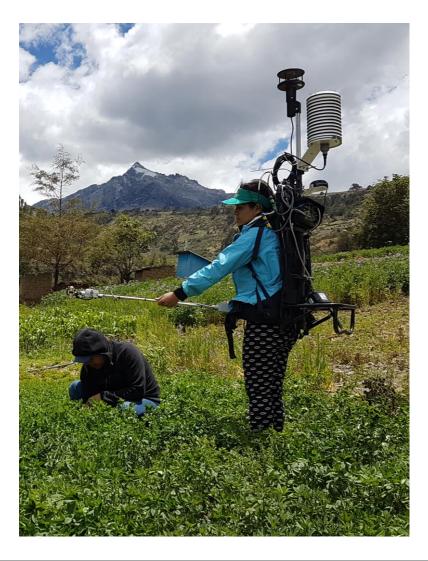
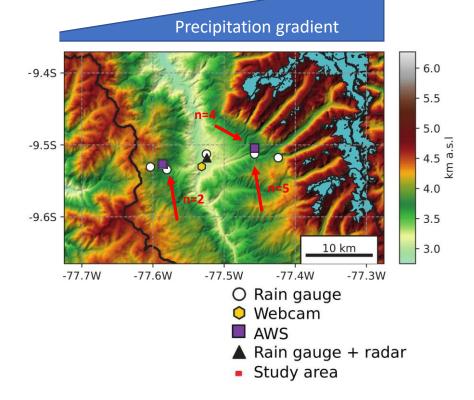




Photo (lower left): Lorenz Hänchen, Photo (upper right): Georg Wohlfahrt, Photo (lower right): Fiorella Collas

Methods: EcoBot

Methods: EcoBot

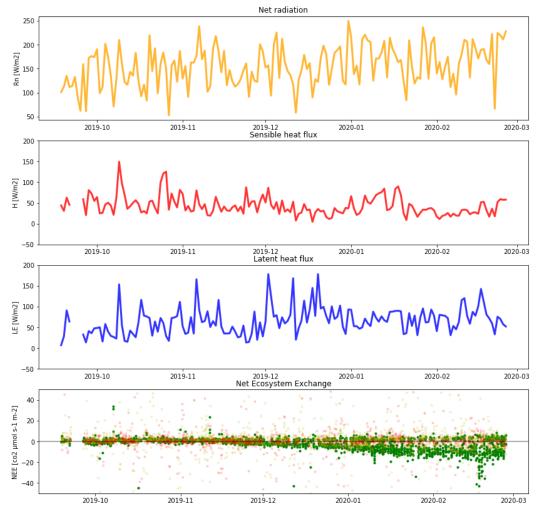
- Latent heat as a residual: $\ \lambda E = Rn H G$
- Calculation of sensible heat flux with measured and estimated parameters


$$H = \frac{\rho C p (T_{aero} - T_{air})}{r_a} \quad r_a = \frac{U}{\frac{u_*^2 + 2}{ku_*}} \quad u_* = \frac{kU}{\ln(\frac{z-d}{z_0})}$$

- Assumptions/Limitations:
 - Near-neutral conditions required
 - Involved assumptions can potentially cause problems in certain conditions
 - e.g. partial canopy cover
 - Potential errors in estimation of ground heat flux

Methods: EcoBot

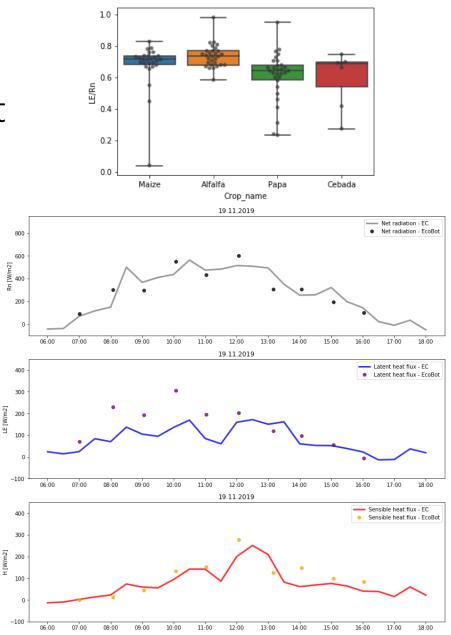
- Three test sites with several crops
- Monthly diurnal measurements
- Above-ground biomass sampling



Llupa (+EddyCovariance & AWS)	Paquishca (rain gauge)	Chincay (AWS)
Potato, Quinua, Oca, Olluco, Oat	Potato, Maize, Alfalfa, Barley	Potato, Alfalfa, Oca, Barley, Pea
Coordillera Blanca	Coordillera Blanca	Coordillera Negra

Preliminary results: Eddy Covariance

- Ongoing work: CO₂ uptake by potato plants is visible
- Currently data loss due to inaccessability of the station caused by quarantine measures



Preliminary results: EcoBot

- Ongoing work, currently outcomes limited by:
 - Small dataset (and currently no data of April and May)
 - Phenological effects
 - Currently working on improvement of estimated parameters involved in calculations

H [W/m2]

Outlook: Crop modelling with AquaCrop OS

- Implement our novel empirical data to calibrate, validate and run the process-based crop model AquaCrop OS
- Adapt and extend the model to allow validation with optical satellite remote sensing to compensate for the poor availability of ground observation data in the region
- Model water demand and productivity of the most important crops for a range of rain-fed management scenarios for present-day and extrapolated near-future conditions.

