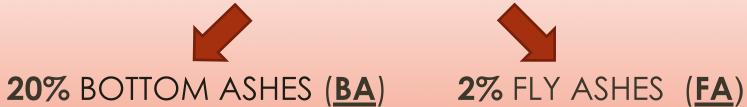


BY

Environmental managing of bottom ashes from municipal thermovalorization waste for civil applications, as a function of particle size, based on steam washing

Caterina Caviglia *1, Enrico Destefanis 1, Davide Bernasconi 1, Linda Pastero 1, Giorgia Confalonieri 2, Ingrid Corazzari 3, Francesco Turci 3, Costanza Bonadiman 4, Renzo Tassinari 4, and Alessandro Pavese 1 1 Università degli Studi di Torino, Dipartimento di Scienze della Terra, Torino, Italy 2 Università degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze Chimiche e Ceologiche, Modena (

- ² Università degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze Chimiche e Geologiche, Modena e Reggio Emilia, Italy
- ³ Università degli Studi di Torino, Dipartimento di Chimica, Torino, Italy
- ⁴ Università di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara, Italy
- * Corresponding author: email: caterina.caviglia@unito.it



Ashes from municipal solid waste thermovalorization plant

Municipal solid waste after the treatment in the incinerator plant are:

Today

<u>BA</u> are taken by specialized Societies and converted mostly in secondary raw materials, available only if included in other matrices (problem of the **release** of chemical species in the environment: soluble salts and heavy metals). [4], [7]

For 500.000 tonnes of waste produced every year 100.000 tonnes are represented by bottom ashes.

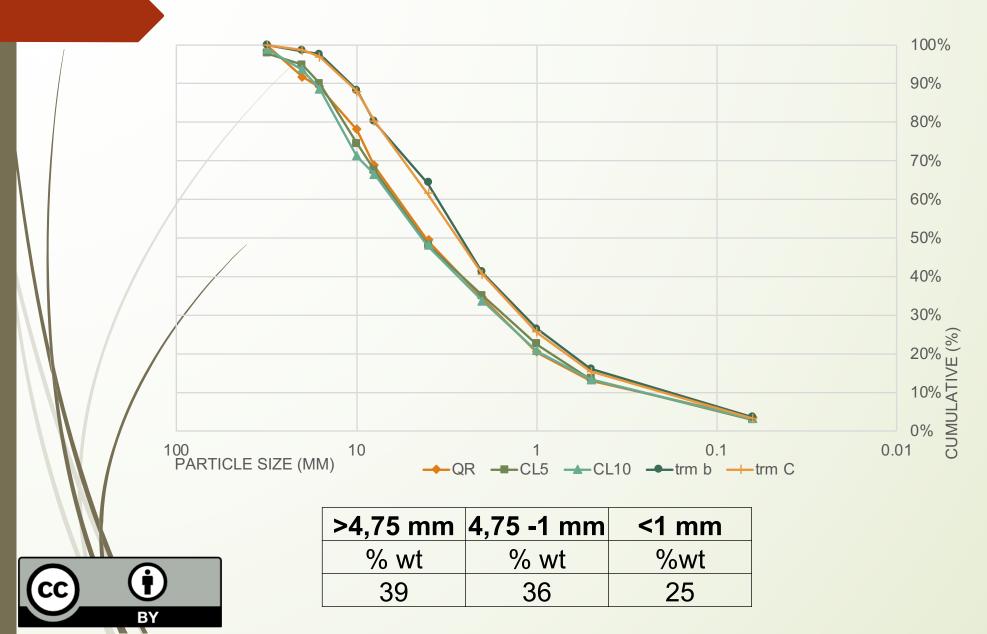
Our study is aimed to improve the environmental compatibility of the BA using sustainable methods

Reuse of bottom ash (BA)

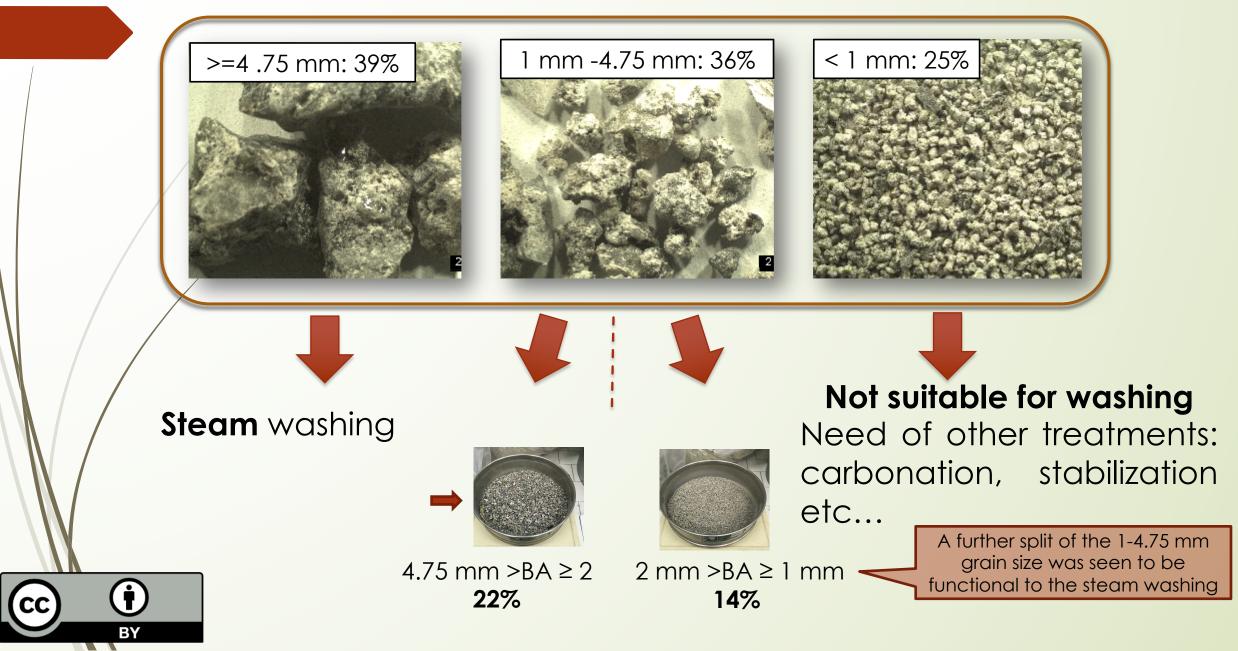
- In Italy bottom ashes (BA) are classified as "not dangerous special waste" and identified by the code CER 190112.
- They are reused in cements and in the industry of brick and clay [6],[7].
- Leaching test is required to be reused for base roads and environmental applications following the Ministerial Decree 186/2006 for waste reuse [8].

Methods to reduce the release in the environment: steam washing

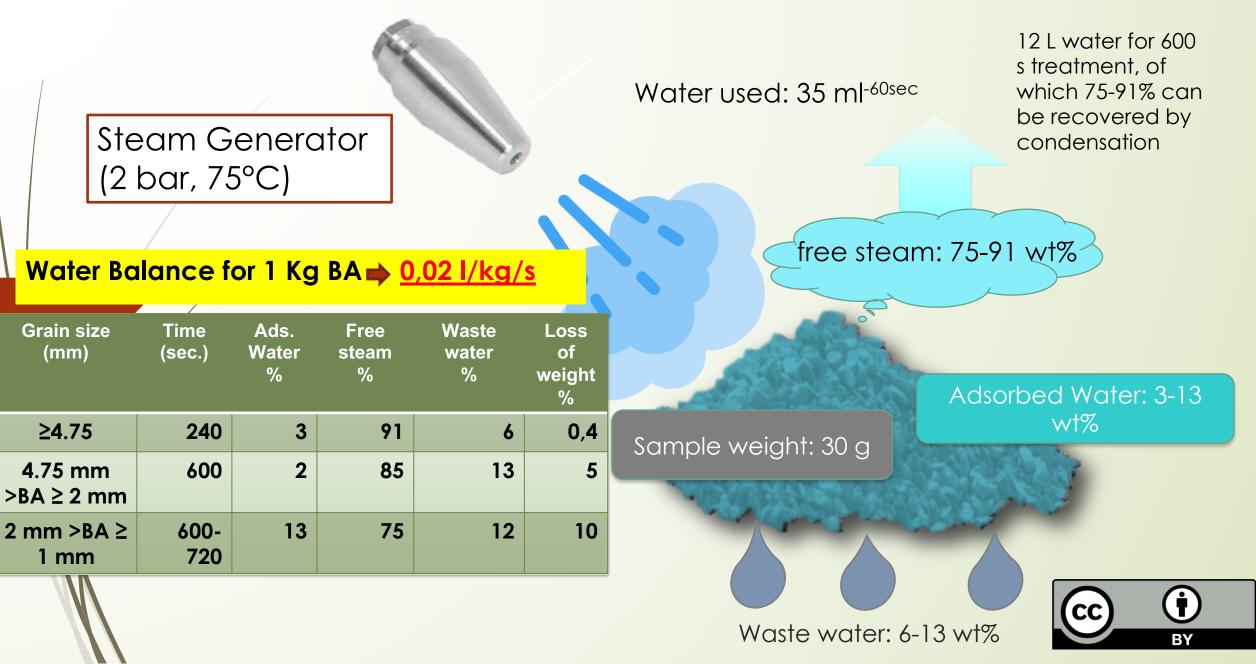
- Water washing [1], [2], [3]
- Metal separation [7]
- Carbonation /maturation [5], [9]



Reducing the release in water of heavy metals and salts (chlorides and sufates) under the threshold value for reuse


Steam washing is a sort of washing by water using the power of steam (2 bar of pressure) at different times of treatment to remove the dust from the BA surface. A thermovalorization plant can produce 220 t/h of steam

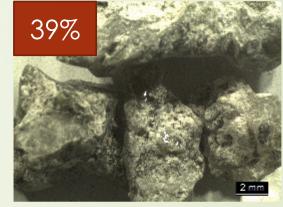
Bottom ashes grain size distribution

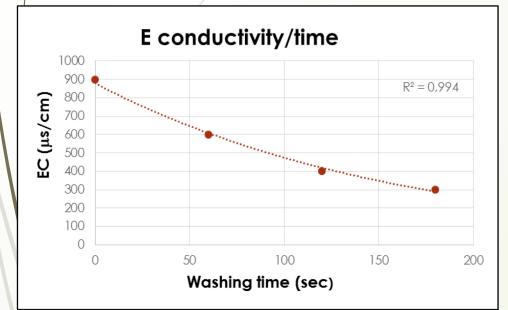


Before the treatment BA were separated in different grain size as function of the treatment: coarser to finer, in order to improve and optimize the time of treatments

Treatments to reduce the release in the enviroment

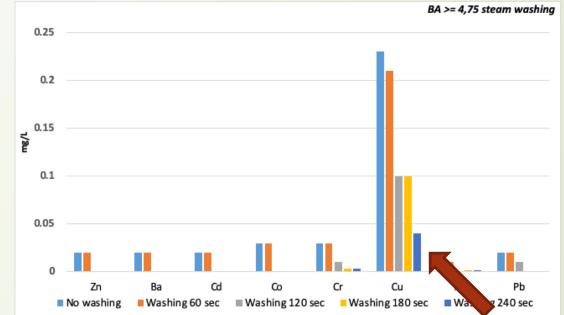
Bottom ash Washing: Water Balance

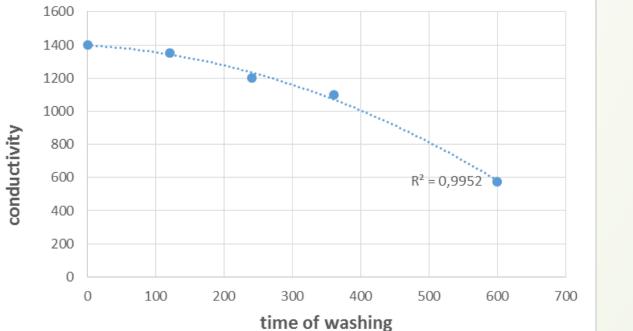

Bottom ash grain size >= 4.75 mm


Steam washing

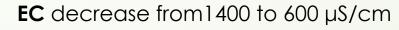
After 240 sec chlorides and heavy metals are under the threshold limits

Time of Washing: 60, 120,180, 240 s


LEACHING TEST


EC decrease from 980 to 300 µS/cm

s ≥ 4.75 mm, steam washing	Cl [.]	\$O4 ²⁻	NO₃ ⁻	Zn	Ba	Cd	Co	Cr	Cu	Ni	Pb
Unwashed	254	52	0.4	0.02	0.02	0.02	0.03	0.03	0.23	0.01	0.02
Steam Washing (60 sec)	93	35	0.2	0.02	0.02	0.02	0.03	0.03	0.21	0.01	0.02
Steam Washing (120 sec)	31	19	n.d.	n.d.	n.d.	n.d.	n.d.	0.01	0.1	0.002	0.01
Steam Washing (180 sec)	42	13	0.33	n.d.	n.d.	n.d.	n.d.	0.003	0.1	0.002	0.002
Steam Washing (240 sec)	40	19	0.137	n.d.	n.d.	n.d.	n.d.	0.003	0.04	0.002	0.001
Italian Legisl. Limits (mg/L)	100	250	50	3	1	0.005	0.25	0.05	0.05	0.01	0.05



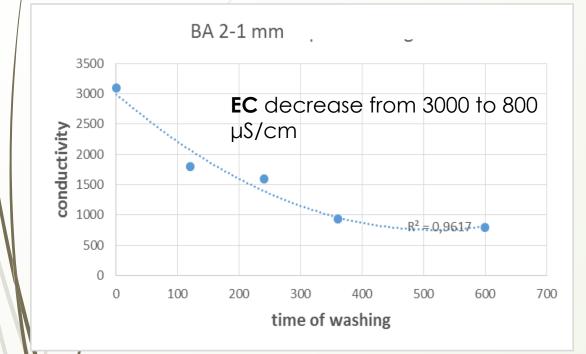
Cu value under TVL

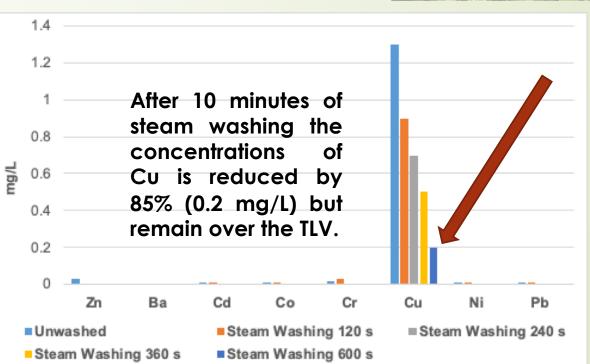
Steam washing 120, 240, 360, 600 sec

0.35							
0.3							
0.25 0.2 Jon 0.15 0.1 0.05	wash heav thres Chlo	6 n ning the ry meto hold lir rides a 600 se					
0							
0	Zn	Ва	Cd	Co	Cr	CuNi	Pb

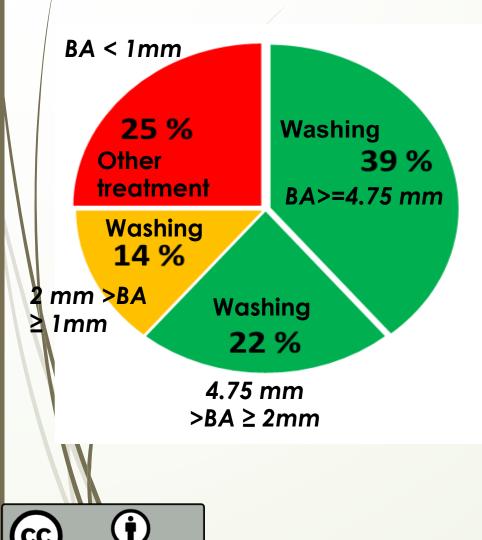
22%

Unwashed Steam Washing 120 s Steam Washing 240 s Steam Washing 360 s


Cl [.]	\$O4 ²⁻	NO₃ ⁻	Zn	Ba	Cd	Co	Cr	Cu	Ni	Pb
258	115	n.d.	0.012	n.d.	0.001	n.d.	0.008	0.3	0.004	0.001
220	100	n.d.	0.012	n.d.	0.001	n.d.	0.008	0.215	0.002	0.003
200	90	n.d.	0.07	n.d.	0.015	n.d.	0.006	0.08	0.001	0.03
186	79	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.07	n.d.	n.d.
80	44	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
100	250	50	3	1	0.005	0.25	0.05	0.05	0.01	0.05
	220 200 186 80	258 115 220 100 200 90 186 79 80 44	258 115 n.d. 220 100 n.d. 200 90 n.d. 186 79 n.d. 80 44 n.d.	258 115 n.d. 0.012 220 100 n.d. 0.012 200 90 n.d. 0.07 186 79 n.d. n.d. 80 44 n.d. n.d.	258 115 n.d. 0.012 n.d. 220 100 n.d. 0.012 n.d. 200 90 n.d. 0.07 n.d. 186 79 n.d. n.d. n.d. 80 44 n.d. n.d. n.d.	258115n.d.0.012n.d.0.001220100n.d.0.012n.d.0.00120090n.d.0.07n.d.0.01518679n.d.n.d.n.d.n.d.8044n.d.n.d.n.d.n.d.	258 115 n.d. 0.012 n.d. 0.001 n.d. 220 100 n.d. 0.012 n.d. 0.001 n.d. 200 90 n.d. 0.07 n.d. 0.015 n.d. 186 79 n.d. n.d. n.d. n.d. n.d. 80 44 n.d. n.d. n.d. n.d. n.d.	258 115 n.d. 0.012 n.d. 0.001 n.d. 0.008 220 100 n.d. 0.012 n.d. 0.001 n.d. 0.008 200 90 n.d. 0.07 n.d. 0.015 n.d. 0.006 186 79 n.d. n.d. n.d. n.d. n.d. 80 44 n.d. n.d. n.d. n.d. n.d. n.d.	258 115 n.d. 0.012 n.d. 0.001 n.d. 0.008 0.3 220 100 n.d. 0.012 n.d. 0.001 n.d. 0.008 0.215 200 90 n.d. 0.07 n.d. 0.015 n.d. 0.006 0.08 186 79 n.d. n.d. n.d. n.d. n.d. 0.07 80 44 n.d. n.d. n.d. n.d. n.d. n.d. n.d.	258 115 n.d. 0.012 n.d. 0.001 n.d. 0.008 0.3 0.004 220 100 n.d. 0.012 n.d. 0.001 n.d. 0.008 0.215 0.002 200 90 n.d. 0.07 n.d. 0.015 n.d. 0.006 0.08 0.001 186 79 n.d. n.d. n.d. n.d. n.d. 0.07 n.d. 80 44 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.


Bottom ash grain size 4.75 mm $>BA \ge 2mm$

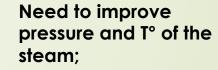
Bottom ash grain size 2 mm >BA ≥ 1mm



Chlorides and sulfate are < TLV

Cl [.]	SO4 ²⁻	NO₃ ⁻	Zn	Ba	Cd	Co	Cr	Cu	Ni	Pb
600	250	n.d.	0.031	n.d.	0.001	0.003	0.02	1.3	0.004	0.003
550	200	n.d.	n.d.	n.d.	0.005	0.006	0.02	0.9	0.001	0.003
410	180	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.7	n.d.	n.d.
118	67	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.5	n.d.	n.d.
16	11	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.2	n.d.	n.d.
100	250	50	3	1	0.005	0.25	0.05	0.05	0.01	0.05
	600 550 410 118 16	600 250 550 200 410 180 118 67 16 11	600250n.d.550200n.d.410180n.d.11867n.d.1611n.d.	600250n.d.0.031550200n.d.n.d.410180n.d.n.d.11867n.d.n.d.1611n.d.n.d.	600250n.d.0.031n.d.550200n.d.n.d.n.d.410180n.d.n.d.n.d.11867n.d.n.d.n.d.1611n.d.n.d.n.d.	600250n.d.0.031n.d.0.001550200n.d.n.d.n.d.0.005410180n.d.n.d.n.d.n.d.11867n.d.n.d.n.d.n.d.1611n.d.n.d.n.d.n.d.	600250n.d.0.031n.d.0.0010.003550200n.d.n.d.n.d.0.0050.006410180n.d.n.d.n.d.n.d.n.d.11867n.d.n.d.n.d.n.d.n.d.1611n.d.n.d.n.d.n.d.n.d.	600250n.d.0.031n.d.0.0010.0030.02550200n.d.n.d.n.d.0.0050.0060.02410180n.d.n.d.n.d.n.d.n.d.n.d.11867n.d.n.d.n.d.n.d.n.d.n.d.1611n.d.n.d.n.d.n.d.n.d.n.d.	600250n.d.0.031n.d.0.0010.0030.021.3550200n.d.n.d.n.d.0.0050.0060.020.9410180n.d.n.d.n.d.n.d.n.d.n.d.0.711867n.d.n.d.n.d.n.d.n.d.n.d.0.51611n.d.n.d.n.d.n.d.n.d.0.2	600250n.d.0.031n.d.0.0010.0030.021.30.004550200n.d.n.d.n.d.0.0050.0060.020.90.001410180n.d.n.d.n.d.n.d.n.d.n.d.0.7n.d.11867n.d.n.d.n.d.n.d.n.d.n.d.n.d.0.5n.d.1611n.d.n.d.n.d.n.d.n.d.n.d.n.d.0.2n.d.

Results of the treatments


CC

ΒY

39+22%: OK after steam washing (240-600 s);

14%: OK chlorides and sulfates after steam washing, Cu reduced by 85% (0.2 mg/l) over 720 s

25%: OK heavy metals by accelerated carbonation; chlorides > legal limits

Metal separation before treatment

Need to improve treatments

Bottom Ash Steam Washing

Water Balance for 1 Kg BA treated

/	Grain size (mm)	BA weight (KG)	Time (sec)	Water used (L)	Ads. Water (L)	Free steam (L)	Waste water (L)	Loss of weight (Kg)
	≥4.75	1	240	4.8	0.144	4.368	0.288	0.004
	4.75 mm >BA ≥ 2mm	1	600	12	0.24	10.2	1.56	0.05
	2 mm >BA ≥ 1mm	1	600	14.4	1.872	10.8	1.728	0.1

Results and conclusions

- Around 39+22% of the whole bottom ash production of a MSWI plant can be recovered using steam washing:
- BA>=4.75 mm can be recovered using steam washing for 240 seconds
- 4.75 mm >BA \geq 2mm can be recovered using a steam washing up to 600 seconds.
- The group 2 mm >BA ≥ 1 mm, after a steam washing of 600 seconds, has still Cu > 0.05 mg/L. Pressure and T° of the steam need to be improved.
- Waste water is proportional to the time of treatment (6 to 13% of the total of water used for steam washing) and needs to be treated
- The grain size < 1 mm requires different treatments to improve its environmetal quality due to the high concentration of heavy metals and salts.

REFERENCES

[1] Alam, Q., Schollbach, K., Florea, M. V. A., & Brouwers, H. J. H. (2016). Investigating washing treatment to minimize leaching of chlorides and heavy metals from MSWI bottom ash. In: 4th International Conference on Sustainable Solid Waste Management. Limassol, Cyprus.

[2] Alam Q., Florea M.V.A., Schollbach K., Brouwers H.J.H. (2017). A two-stage treatment for Municipal Solid Waste Incineration (MSWI) bottom ash to remove agglomerated fine particles and leachable contaminants. Waste Management Volume 67, 181–192.

[3] Alam Q., Lazaro A., Schollbach K.. Brouwers H.J.H (2020). Chemical speciation, distribution and leaching behavior of chlorides from municipal solid waste incineration bottom ash. Chemosphere, Volume 241, 124985.

[4] CEWEP (2017). Bottom ash factsheet. http://www.cewep.eu/wp-content/uploads/2017/09/FINAL-Bottom-Ash-factsheet.pdf.

[5] Fernández Bertos M., Simons S.J.R., Hills C.D., Carey P.J. (2004). A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of Hazardous Materials 112, 193–205.

[6] Forteza R., Far M., Segur C., Cerda V. (2004). Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste Management, 24, 899-909.

[7] Funari V., Braga R., Bokhari S.N.H., Dinelli E., Meisel T. (2015). Solid residues from Italian municipal solid waste incinerators: a source for "critical" raw materials. Waste Management 45, pp. 206-216

[8 Ministerial Decree no.186 dated 04/05/2006. Regulatory that modified Ministerial Decree dated 5 February 1998. Official Gazette no. 115 dated 05/19/2006.

[9] Van Gerven T, Van Keer E, Arickx S, Jaspers M, Wauters G, Vandecasteele C.(2005). Carbonation of MSWI-bottom ash to decrease heavy metal leaching, in view of recycling. Waste Management 25(3), 291–300.