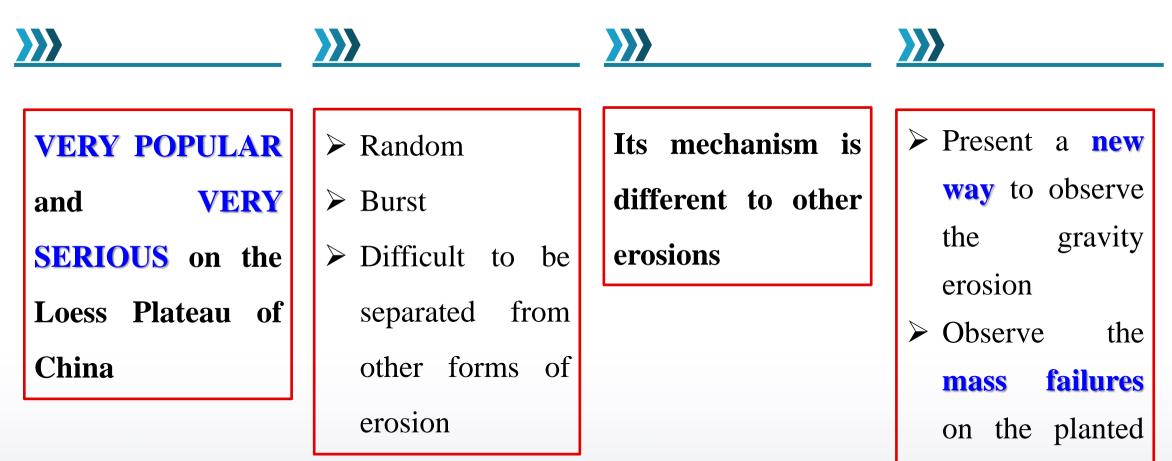
Effects of PLANT on GRAVITY EROSION

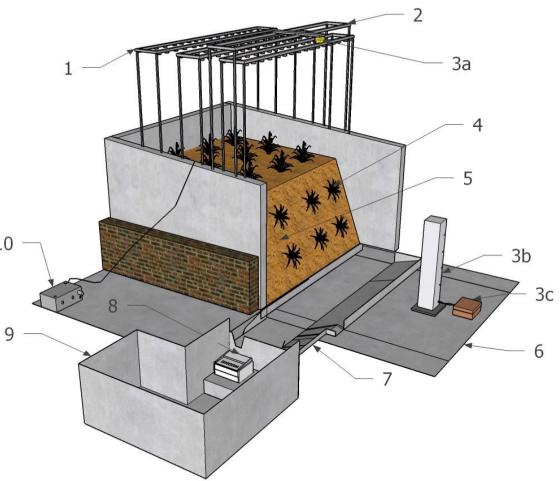
on the Gully Sidewall under the Intense Rainfall

Xingyang Zhao, Xiangzhou Xu

Dalian University of Technology

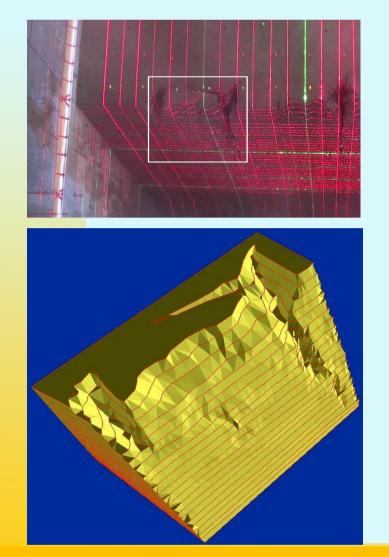
4-8 May, 2020 Vienna, Austria

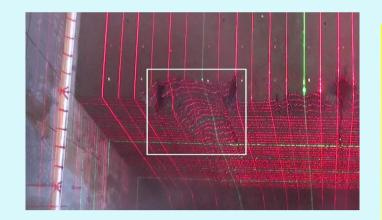

Contents

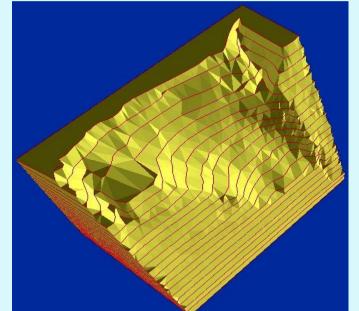

1 Introduction

slopes

2 Method	ls & material					
Methods						
Experiments	Models VL & BL					
	Sidewall model					
Devices	Topography meter					
	Rainfall simulator	10 -				
Conditions	 In a same flume Simulated rainfall and 					
	initial slope are same					
Material						
Gentle slope:3°; steep slope: 70°						
Projected area: 250*300 cm ²						
Rainfall: 0.8 mm/min*60 min						
Kerria: 2%						


Experimental setup




Rainfall simulator, 2. Camera holder,
 Topography meter, 4 plant, 5 model
 slope

Volume of the failure mass

The relative errors among the volumes observed by the Topography Meter and those of the conventional instruments were all within 10 %

Landform after 21'25" rainfall

Landform after 21'27" rainfall

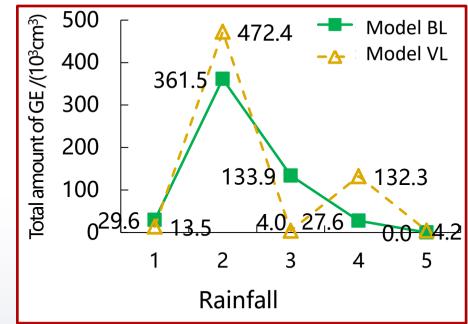
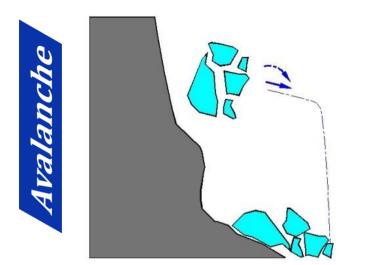
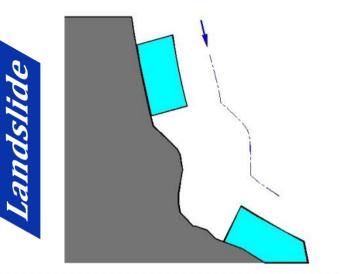

3 Results & Discussion Plant roots may reinforce the Control soil > Self-gravity of the plant **Promote** 500 Fotal amount of GE /(10^3 cm³) > Increase of the permeability 400 300 200 植物 - 崩滑前 100

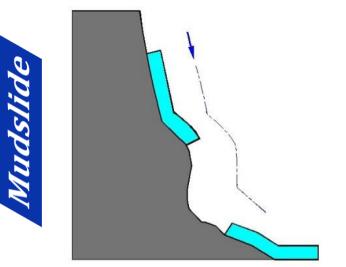
Fig. 3 A tree is sliding down together with the mass failure

3.1 Influence of the vegetation on the

total amount of gravity erosion : ignored


Moldel BL: 626.5×10³ cm³ **Model VL**: 552.6×10³ cm³^{12%}




3 Results & Discussion

3.2 Effects of vegetation on different types of gravity erosions

Definition

The phenomenon that soil suddenly topples, fragments and rolls down fully apart from a sloped face The phenomenon that soil on the slope slips down as a whole along a certain weak belt The failure occurring with distorting shape and involving full saturation

3 Results & Discussion

3.2 Effects of vegetation on

different types of gravity erosions

Vegetated vs. bared land models after 5 rainfalls

	Total amo	unt of gravity erosion		Maximum amount in a rainfall		
Туре	Vegetated Land Model /(10 ³ cm ³)	Bare Land Model /(10 ³ cm ³)	Increase in the Planted Model	Vegetated Land Model $/(10^3 \text{ cm}^3)$	Bare Land Model $/(10^3 \text{cm}^3)$	Increase in the Planted Model
Avalanche	138.2	488.0	-72%	26.9	224.1	-88%
Landslides	US411.2	mudslide		the plar	nts may a	nches and aggravate
Mudslides	3.1		-09%		3.U	-/8%

4 Conclusions

Effects of plant A method has been presented that could quantitatively measure the timevariable gravity erosion in the whole process of a rainfall event, and the **Topography Meter** has completed a precise and rapid measurement of slope behavior

The influence of the vegetation on the total amount of gravity erosion may be ignored.

3

The vegetation on the gully sidewall had different influences on the varied types of gravity erosion. The total amounts of avalanche, landslide and mudslide on the vegetated sidewalls in a rainfall have been increased – 72%, 220%, -69% of those on the bare land, respectively.