Cleaning magnetometer data using multi sensor configuration

Application to GEO-KOMPSAT-2A

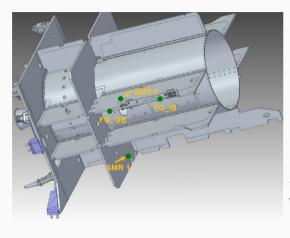
D. Constantinescu^{1,2}, U. Auster¹, M. Delva², O. Hillenmaier⁴, W. Magnes², F. Plaschke²

¹Institut für Geophysik und extraterrestrische Physik, Braunschweig, Germany
²Institute for Space Sciences, Mägurele, Romania
³Space Research Institute, Austrian Academy of Sciences, Graz, Austria

⁴Magson GmbH, Berlin, Germany

Outline

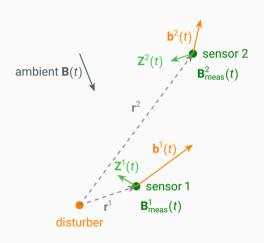
- 1 Introduction
- Variance analysisGFO-KOMPSAT-2A
- 2 SOSMAG concept
- Measurement configuration
- Cleaning algorithm
- 3 GK-2A magnetic field data cleaning
- Selected data
- Correction of FGMI and FGMO using AMR1
- Correction of FGM I/O using FGM O/I
- Results



It is a simple technique which identifies a more meaningful basis to represent the measured data

- assume N measured quantities, $q_i(t)$; i = 1, ..., N (e.g. $B_x(t), B_y(t), B_z(t)$)
- Covariance matrix elements: $C_{ij} = \langle q_i q_j \rangle \langle q_i \rangle \langle q_j \rangle$
 - diagonal elements represent the standard deviation σ^2 for each components
 - off-diagonal elements represent the correlation between different componentss

- compute the eigenvalues / eigenvectors: $C\mathbf{v}_j = \lambda_j \mathbf{v}_j$; $j = 1, \dots, N$; $\lambda_1 > \lambda_2 > \dots > \lambda_N$
- construct the transformation matrix to the new basis: $\mathcal{R} = (\textbf{v}_1, \dots, \textbf{v}_N)$
- the transformed covariance matrix $C' = R^T CR$ is diagonal
 - most of the variation is in the first new component
 - correlations between the new components are minimized


- Korean meteo / space weather satellite
- launched on Dec 4 2018
- geostationary orbit 128.2° E
- no magnetic cleanliness
- 2 FGM sensors on a 1 m long boom
- 2 AMR sensors on the spacecraft body

task:

• to remove the sc generated AC disturbances

Service Oriented Spacecraft Magnetometer (SOSMAG) concept

• Magnetic field measured at sensor i:

$$\mathbf{B}_{\mathsf{meas}}^i(t) = \mathbf{B}(t) + \mathbf{b}^i(t) + \mathbf{Z}^i(t)$$

- $\mathbf{B}(t) \rightarrow \text{ambient field}$
- $\mathbf{b}^{i}(t)$ \rightarrow disturbance at \mathbf{r}^{i}
- $\mathbf{Z}^{i}(t)$ \rightarrow sensor specific noise and offset

• Difference between measurements:

$$\Delta \mathbf{B}_{\mathsf{meas}}^{ij}(t) = \Delta \mathbf{b}^{ij}(t) + \Delta \mathbf{Z}^{ij}(t)$$

• Corrected measurement:

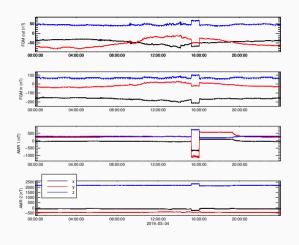
$$\mathbf{B}_{ ext{corr}}^{i} = \mathbf{B}_{ ext{meas}}^{i} + \mathcal{A}^{ij}(\Delta \mathbf{B}_{ ext{meas}}^{ij}), \quad \mathcal{A}^{ij} = lpha^{ij}\mathcal{R}(t)$$

Variance driven SOSMAG cleaning algorithm

Polarized disturbance: $\mathcal{R} = \text{constant in time} \Rightarrow$

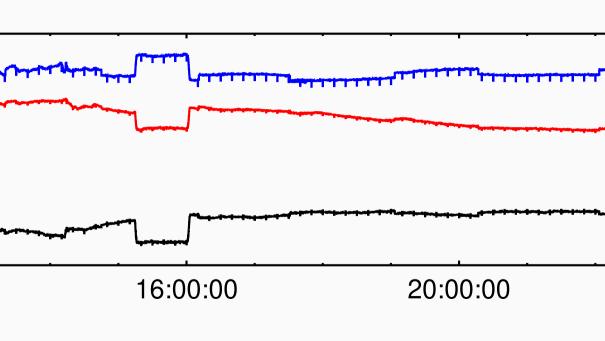
- Transform to the Variance Principal System (x-axis aligned with the maximum variance direction)
- ullet Only the maximum variance component needs correction: $(B_{ ext{corr}}^i)_x = (B_{ ext{meas}}^i)_x lpha^{ij} (\Delta \mathbf{B}_{ ext{meas}}^{ij})_x$
- $\Rightarrow A^{ij}$ is completely determined by the scalar coefficient α^{ij} and by the maximum variance directions:

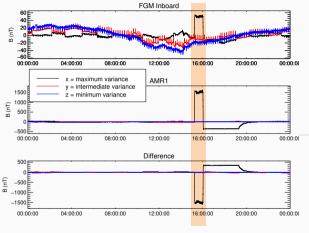
$$\mathcal{A}_{kl}^{ij} = -\alpha^{ij} \Big(\big(\mathcal{R}^i\big)^{-1} \Big)_{kx} \Big(\mathcal{R}^{ij}\Big)_{xl}, \qquad \alpha^{ij} \text{ is estimated from the variance ratio}$$


- Disturbance is removed but sensor specific is noise added: $(B_{\text{corr}}^i)_x = B_x + 0 + Z_x^i \alpha^{ij}(Z_x^i Z_x^j)$
- Corrected measurements for the two sensors are identical: $(B_{\text{corr}}^i)_{\text{x}} \equiv (B_{\text{corr}}^j)_{\text{x}}$

Higher order corrections:

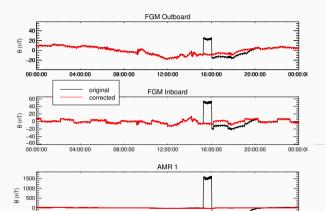
$$\mathbf{B}^{n,ij} = \mathbf{B}^{n-1,i} + \mathcal{A}^{n-1,ij} \Delta \mathbf{B}^{n-1,ij} \,, \qquad \mathcal{A}^{n-1,ij}_{kl} = -\alpha^{n-1,ij} \Big(\big(\mathcal{R}^{n-1,i}\big)^{-1} \Big)_{kx} \Big(\mathcal{R}^{n-1,ij} \Big)_{xl}$$




- Representative for the routine operations
- 16:00 disturbance seen by all sensors
- AMR/FGM amplitude ratios:
 - 40 for AMR1
 - 5 for AMR 2

Strategy:

- Do not use the AMR2 data for AC cleaning
- 1st step: clean both FGMs using AMR1
- 2nd step: clean resulted FGMI/O using FGMO/I

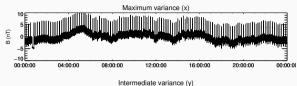

- find the VPS for the [15:10,16:15] interval
- distinct coordinate systems
- rotate the entire day to the found VPS
- main disturbance only in x-component
- no steps in the z-component

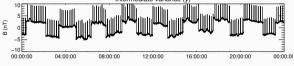
−500 <u>E</u>__

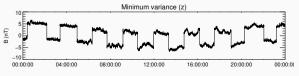
04:00:00

08:00:00

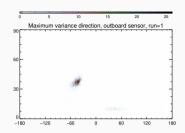
- scaling and rotation parameters:
 - FGM Out $\alpha = 48$ $\theta = 51^{\circ}$ $\phi = 126^{\circ}$
 - $\bullet \ \ \mathsf{FGM\,In} \quad \ \alpha = \mathsf{27} \quad \ \theta = \mathsf{54}^{\circ} \quad \phi = \mathsf{141}^{\circ}$
 - $\bullet \ \ \mathsf{AMR1} \qquad \alpha = \mathsf{0.97} \ \ \theta = \mathsf{73}^{\circ} \quad \phi = \mathsf{114}^{\circ}$
- targeted disturbance removed
- $\bullet \;$ corrected FGM \Rightarrow 2nd step initial data

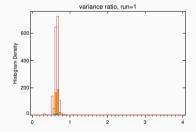

12:00:00


16:00:00

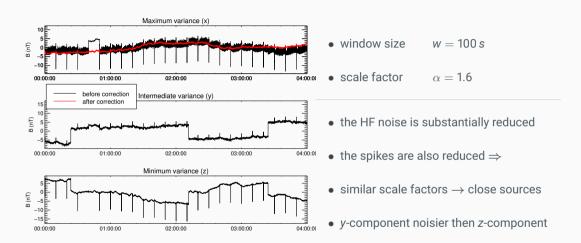

20:00:00

00:00:00

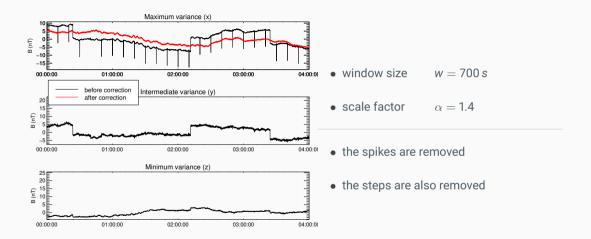



Disturbances decouple on components:

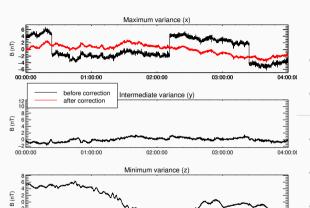
- high frequency noise on x
- spikes on x and y
- steps on y and z



- use sliding windows to determine the variance direction
- determine the most probable variance direction
- select the corresponding α scale factors
- compute the mean scale factor



- window size selects the disturbance to be removed
- first order correction:
 - window size: 100 s (high frequency disturbance)
 - maximum variance direction: out (-42°, 37°); in (-38°, 52°)
 - scale factor: out 0.653; in 1.620

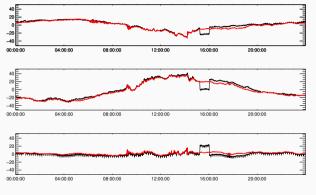


2nd step

02:00:00

03:00:00

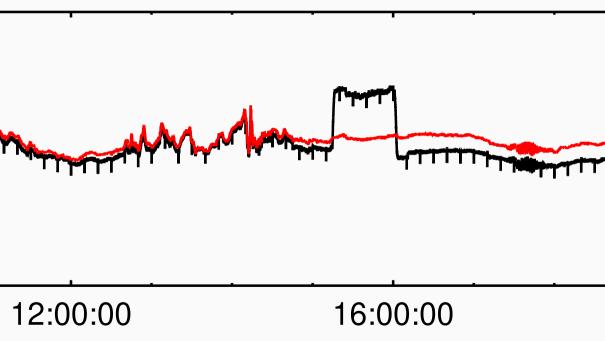
04:00:00

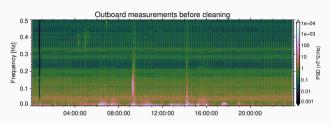

- window size $w = 16000 \, s$
- scale factor $\alpha = 1.1$

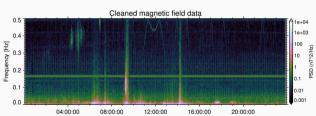
- the steps are removed
- remaining HF noise and spikes reduced
- remnants of steps and spikes on y

01:00:00

00:00:00




• combined single step correction:


$$\mathbf{B}_{corr}^{0} = \mathcal{M}^{0} \mathbf{B}_{meas}^{0} + \mathcal{M}^{I} \mathbf{B}_{meas}^{I} + \mathcal{M}^{AMR} \mathbf{B}_{meas}^{AMR}$$

- parameters uploaded to the spacecraft
- cleaning is done now onboard

the spectral power of the disturbances is reduced in average by at least a factor of eight:

$$\mathrm{mean}(\sum_{\mathrm{xyz}} P_{\mathrm{original}} / \sum_{\mathrm{xyz}} P_{\mathrm{cleaned}}) = 8$$

Summary

- variance analysis is a powerful tool for cleaning magnetometer data
- multiple disturbances (time scales, directions) tend to decouple in the Variance Principal System

- three from four available sensors on GK-2A were used to clean the data
- the determined cleaning parameters were uploaded to the spacecraft