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The Gironde estuary
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Atlantic 

Ocean

• 635 km²

• Confluence between 2 rivers
• mean discharges

• Dordogne : 380 m 3/s
• Garonne : 630 m 3/s 

• 75 km long (Bec d’Ambès to the mouth)
• Dowstream width : 12 km

• Maritime influence
• Inflows from the Atlantic Ocean : 

15 à 25000 m3 / tide cycle

Dordogne

river

Garonne

River

75 km

Bec d’Ambès

Royan

Context and 
motivation

Uncertainty quantification Conclusions and 
perspectives

Data assimilation



La Centrale Nucléaire du Blayais les pieds dans l’eau après la 
tempête de décembre 1999. 
Crédit photo : Archives Sud-Ouest

Stakes Natural Hazards

Inondations à Bordeaux en mars 1988. 
Crédit photo : Archives Sud - Ouest
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• Human : 185 cities, 1 million 
inhabitants ; agriculture

• Industrial stakes: Blayais 
hydroelectric power station, Pauillac 
petrol terminal

• Sea river flooding
• Climate change
=> Marine submersions
=> floods

Source : Schéma directeur de prévision des crues Adour-Garonne , DREAL Midi-Pyrénées, 29/12/2015
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• Based on : 

� 2D shallow water equations

� Unstructured mesh (space
discretization) : 7351 nodes, 12838 
elements (mesh0 )

� Output on each node : (H,U,V)

Water levels forecast in Gironde estuary
using a Telemac2D numerical model 
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Calibration parameters
• Friction coefficients : Ks1, Ks2, Ks3, 

Ks4 
• Wind influence coefficient : Cdz

Forcings
• Meteorological : wind and pressure
• Maritime boundary conditions (CLMAR) 
• River discharges : in Garonne (QGAR) 

and Dordogne (QDOR)

Other inputs : topography and bathymetry
• No overflowing
• Bathymetry provided by GPMB

Water levels forecast in Gironde estuary
using a Telemac2D numerical model 
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EVENTS
• calibration : 4 events among which

2003
• validation : 6 events among which

1999

Water levels forecast in Gironde estuary
using a Telemac2D numerical model 
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RMSE = 20 cm
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EVENTS
• calibration : 4 events among which

2003
• validation : 6 events among which

1999

Stations
• 13 stations

Criteria
• Root mean square error (RMSE)
• High tide nash (PM)

Source : Hissel (2010), Projet Gironde : rapport final d’évaluation du modèle Gironde
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=> Data assimilation techniques 

Water levels forecast in Gironde estuary
using a Telemac2D numerical model 
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Data assimilation

Observations Numerical model

(from Rochoux & al, 2015)

What do we know ?
• the "true" state of the system is unknown and must be estimated

• measurements and models are imperfect
What do we want ?

• Identify the most influential variables in time and space
• find an optimal combination of measurements and simulations

Measurement errors
Ad hoc measures

Equations
Calibration
Forcings
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Partie I : uncertainty quantification (UQ-GSA)

• Objective : identify the most influential variables and establish a space-time hierarchy

• Scientific latch: space-time variables / forcings (maritime influence)

• Technological lock: 2D code (resources / environment)

Partie II : data assimilation using ensemble method (EnKF-ɣ-KLBC)

• Objective : correct relevant variables by optimizing the observation network 

• Scientific locks : 

� Dispersion/characterization of the ensemble

� Interactions between variables and equifinality

• Technology lock: 2D code (HPC / sequential task farming)

Improve the prediction of water levels at the most sensitiv e stations of the estuary using ensemble data 
assimilation techniques.

Contexte Quantification d’incertitudes Conclusions

L’estuaire de la Gironde, les enjeux État de l’art Objectifs de ma thèse

Assimilation de données
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State of the art for the control vector

Boundary conditions

Parameters system state

???

Ricci & al (2011)

Rivers

Meteo

Defforge & al (2019)

Vrugt &al (2006)

Moradkhani (2005)

Oubanas & al (2018)

Rivers Estuaries

Tamura & al (2014)

Siripatana (2018)
Almeida & al (2015)

Etala & al (2015) 

Raboudi & al (2019)

Meteo

Uncertainties put on

Boundary conditions

Bertino  & al (2002)

Frolov & al (2009)

Canas & al  

Barthélémy (2017)

Habert & al (2016)

Rivers Estuaries
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• Sobol‘ sequence

• 8 uncertain variables: 
� scalar : Ks, CDz
� Time-dependent : 

CLMAR, QDOR, QGAR

• Mesh and number convergence study

15

Global sensitivity analysis (GSA) using
variance decomposition (ANOVA) :
Methodology for perturbing inputs
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Global sensitivity analysis (GSA) using
variance decomposition (ANOVA)

D’après Saltelli & al, 2000

Why « global » ?

• Statistical approach based on the 
resampling of the input space

• parameters varying
simultaneously in the complete
range of values

• Very large number of simulations

(Ne*(d+2))

Inputs

Model

y pdf
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Global sensitivity analysis (GSA) using
variance decomposition (ANOVA) :
Methodology for perturbing time-

dependent inputs

Objective
Preserve the temporal error correlation

Assumption
Time chronicles represented by Gaussian
processes

Method
Reduction of the input space with a
Karhunen Loève decomposition

Temporal vector : perturbed member p over Ne

Eigen modes – autocorrelation duration = 7 days

Time (in s)

,nmodes
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time (in s)

Temporal vector : perturbed member p over Ne

,nmodes

Global sensitivity analysis (GSA) using
variance decomposition (ANOVA) :
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time (in s)

Temporal vector : perturbed member p over Ne

,nmodes

Global sensitivity analysis (GSA) using
variance decomposition (ANOVA) :
Methodology for perturbing time-

dependent inputs

Objective
Preserve the temporal error correlation

Assumption
Time chronicles represented by Gaussian
processes

Method
Reduction of the input space with a
Karhunen Loève decomposition
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Ensemble of Ne members of perturbed temporal vectorsGlobal sensitivity analysis (GSA) using
variance decomposition (ANOVA) :
Methodology for perturbing time-

dependent inputs

Objective
Preserve the temporal error correlation

Assumption
Temporel chronicals Time Chronicles
represented by Gaussian Processes

Method
Reduction of the input space with a
Karhunen Loève decomposition

Context and 
motivation

Uncertainty quantification Conclusions and 
perspectives

Data assimilation



22

Global sensitivity analysis (GSA) using
variance decomposition (ANOVA) :

results

Method
Computation of Sobol’ indices

Results
Determination of the spatio-temporal
evolution of the zone of influence

Exemple
Space-time homogeneity

highly

influential

Low

influential
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Laborie, V & al (2019), Quantifying forcing 
uncertainties in the hydrodynamics of the Gironde 

estuary , J. of Comp. Geosciences
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• Choice of a control vector

• Construction of the ensemble
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The Ensemble Kalman filter

ɣ

Ksi with i∈(1,..,4)

Cdz

αi with i∈(1,..,nmodes,CLMAR)

αi,GAR with i∈(1,..,nmodes,QGAR)

αi,DOR with i∈(1,..,nmodes,QDOR)
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• Choice of a control vector

• construction of the ensemble

• Sequential in 2 steps (analysis and
prediction)

25
(Source: Carrassi & al (2018))

The Ensemble Kalman filter
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Analysis Prediction Distance to 

observations
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Validation with twin experiments

• Influence zone validation

• Time-varying parameters

• Simultaneous reconstruction of parameters and 
forcings

Evaluation on real experiments

• Evolution of parameters and forcings

• Performances 
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Validation of influence zones

Good estimation of constant or periodic parameters

Improvement of water level forecasting

Over-estimation of the amplitude of the parameters

Difficulties in estimating Ks3 (confluence zone)

Highlighting the equifinality on the Ks
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Constant and periodic 
coefficients of friction

Control variable
Ks1, Ks2, Ks3

Ne = 100

Observations
3 stations: Le 

Verdon, Pauillac, 
Bordeaux
Frequency

1 hour

Assimilation 
window
1 hour

Overlapping
1 hour
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Control variable
Ks1, Ks2, Ks3, αCLMAR

αGARONNE, αDORDOGNE

Ne = 100

Observations
12 stations
Frequency

1 hour

Assimilation 
window
1 hour

Overlapping
1 hour

Evolution of the mean of the analysed ensemble WITH redispersion for Ks1

Good representation

Joint estimation of forcing by 
decomposition of KL and 

parameters

Context and 
motivation

Uncertainty quantification Conclusions and 
perspectives

Data assimilation



29

Joint estimation of forcing by 
decomposition of KL and 

parameters

Control variable
Ks1, Ks2, Ks3, αCLMAR

αGARONNE, αDORDOGNE

Ne = 100

Observations
12 stations
Frequency

1 hour

Assimilation 
window
1 hour

Overlapping
1 hour

High frequency oscillations !!!
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Evolution of the mean of the analysed ensemble WITH redispersion for Ks3



Evolution of the mean of the analysed ensemble WITH redispersion for αCLMAR

No convergence
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Joint estimation of forcing by 
decomposition of KL and 

parameters

Control variable
Ks1, Ks2, Ks3, αCLMAR

αGARONNE, αDORDOGNE

Ne = 100

Observations
12 stations
Frequency

1 hour

Assimilation 
window
1 hour

Overlapping
1 hour



Reconstruction of the maritime boundary condition CLMAR

Perfect reconstruction
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Joint estimation of forcing by 
decomposition of KL and 

parameters

Control variable
Ks1, Ks2, Ks3, αCLMAR

αGARONNE, αDORDOGNE

Ne = 100

Observations
12 stations
Frequency

1 hour

Assimilation 
window
1 hour

Overlapping
1 hour



Root mean square error without and with assimilation

RMSE = 10 cm

Dowstream

estuary

Upper

estuary

Fluvial estuary
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Joint estimation of forcing by 
decomposition of KL and 

parameters

Control variable
Ks1, Ks2, Ks3, αCLMAR

αGARONNE, αDORDOGNE

Ne = 100

Observations
12 stations
Frequency

1 hour

Assimilation 
window
1 hour

Overlapping
1 hour



No convergence of modal coefficients

High-frequency oscillations for parameters

Difficulties in estimating Ks3 (confluence zone)

Equifinality on Ks and α

Good estimation of friction parameters

Very good reconstruction of time-dependent forcings

Improvement of water levels forecast
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Joint estimation of forcing by 
decomposition of KL and 

parameters

Control variable
Ks1, Ks2, Ks3, αCLMAR

αGARONNE, αDORDOGNE

Ne = 100

Observations
12 stations
Frequency

1 hour

Assimilation 
window
1 hour

Overlapping
1 hour
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Good estimation of friction parameters

Very good reconstruction of time-dependent forcings

Improvement of water levels forecast

No convergence of modal coefficients

High-frequency oscillations for parameters

Difficulties in estimating Ks3 (confluence zone)

Equifinality on Ks and α

Study of the most efficient configuration of the method

Control variables: time-dependent (discharges, maritime boundary): modes, 
parameters: Ks1, Ks2, Ks3

Optimal observation network: 7 tide gauges, Ne =100
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Joint estimation of forcing by 
decomposition of KL and 

parameters

Control variable
Ks1, Ks2, Ks3, αCLMAR

αGARONNE, αDORDOGNE

Ne = 100

Observations
12 stations
Frequency

1 hour

Assimilation 
window
1 hour

Overlapping
1 hour
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⇒ Uncertainty Quantification Study (ANOVA-GSA) for the 2003 storm
⇒ Ensemble kalman filter
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1. Identification of the spatio-temporal evolution of the zones of influence of time-dependent variables

2. Joint Estimation of Parameters and time-dependent forcings

⇒ Correlations and specific equifinality
⇒ reconstruction of maritime boundary conditions
⇒ Sensitive area of the confluence
⇒ NO convergence of modal coefficients, variability o f friction coefficients

3. Improvement of water levels estimation along the estuary under reanalysis

⇒ Better estimation of high tides, storm peaks downstream of the estuary, signal amplitude
⇒ Most efficient configuration in a synthetic setting
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Validation with twin experiments

Influence zone validation

Time-varying parameters

Simultaneous reconstruction of parameters 
and forcings

Evaluation on real experiments

Evolution of parameters and forcings

Performances 
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⇒ Perspective 1



⇒ Localisation based on the analysis of the spatio-temporal evolution of sensitivity indices (Sobol')
⇒ Emulation of the Ensemble Kalman filter (Raboudi & al, Frolov & al)
⇒ Iterative Kalman Filter (Sakov & al, 2012)
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2. Improvement of the methodology for a better representation of physical processes

3. Extension of the control vector to 2D uncertain time and space dependent fields

⇒ Integration of additional forcings: meteorological forcing, bathymetry 

5. Model reduction and operationnability

⇒ Metamodels
⇒ Predictive mode

4. Diversification of observations

⇒ Satellite data (SWOT project)
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