

MULTI-PARAMETRIC VARIATIONAL DATA ASSIMILATION OF MODIS SNOW COVER DATA THROUGH HBV MODEL IN MOUNTAINOUS UPPER EUPHRATES RIVER CATCHMENT

Aynur ŞENSOY¹, <u>Gökçen UYSAL¹</u>, Rodolfo ALVARADO-MONTERO²

1 Eskisehir Technical University, Civil Engineering, Turkey

2 Operational Water Management, Deltares, Netherlands

A European network for a harmonised monitoring of snow for the benefit of climate change scenarios, hydrology and numerical weather prediction

ESSEM COST Action ES1404

Online | 4–8 May 2020

Progresses and gaps on monitoring of snow and its components at the local-, regional to global scale and its applications to support weather, hydrological and climate science, as well as monitoring of natural hazards

Outline

1.Introduction

2. Methodology

- Multi-parametric VarDA (MP-VarDA)
- Hydrological model (HBV)

3. Study Area, Data, Model

- Upper Euphrates Basin
- Data (Hydro-meteorological & Satellite)
- Hydrological model application

4.Implementation of MP-VarDA Application

- 5. Results & Comparison
- 6.Conclusion

1. Introduction (1) Satellite based data...

Class	Observation	Ideal Technique	Ideal Time Scale	Ideal Space Scale	Currently available data
Parameters	Land cover/change	optical/IR	daily or changes	1km	AVHRR, MODIS, NPOESS
	Leaf area & greenness	optical/IR	daily or changes	1km	AVHRR, MODIS, NPOESS
	Albedo	optical/IR	daily or changes	1km	MODIS, NPOESS
	Emissivity	optical/IR	daily or changes	1km	MODIS, NPOESS
	Vegetation structure	lidar	daily or changes	100m	ICESAT
	Topography	in-situ survey, radar	changes	1m–1km	GTOPO30, SRTM
Forcings	Precipitation	microwave/IR	hourly	1km	TRMM, GPM, SSMI, GEO-IR, NPOESS
	Wind profile	Radar	hourly	1km	QuickSCAT
	Air humidity & temp	IR, microwave	hourly	1km	TOVS, AIRS, GOES, MODIS, AMSR
	Surface solar radiation	optical/IR	hourly	1km	GOES, MODIS, CERES, ERBS
	Surface LW radiation	IR	hourly	1km	GOES, MODIS, CERES, ERBS
States	Soil moisture	microwave, IR change	daily	1km	SSMI, AMSR, SMOS, NPOESS, TRMM
	Temperature	IR, in-situ	hourly-monthly	1km	IR-GEO, MODIS, <u>avhrr, tovs</u>
	Snow cover or SWE	optical, microwave	daily or changes	10m-100m	SSMI, MODIS, AMSR AVHRR, NPOESS
	Freeze/thaw	radar	daily or changes	10m-100m	Quickscat, IceSAT, CryoSAT
	Ice cover	radar, lidar	daily or changes	10m-100m	IceSAT, GLIMS
	Inundation	optical/microwave	daily or changes	100m	MODIS
	Total water storage	gravity	changes	10km	GRACE
Fluxes	Evapotranspiration	optical/IR, in-situ	hourly	1km	MODIS, GOES
	Streamflow	microwave, laser	hourly	1m-10m	ERS2, TOPEX / POSEIDON, GRDC
	Carbon flux	In-situ	hourly	1km	In-situ
	Solar radiation	optical, IR	hourly	1km	MODIS, GOES, CERES, ERBS
	Longwave radiation	optical, IR	hourly	1km	MODIS, GOES
	Sensible heat flux	IR	hourly	1km	MODIS, ASTER, GOES

Houser et al. (2012)

Table 1. Characteristics of remotely sensed hydrological observations potentially available within the next decade.

1. Introduction (2) How to produce a forecast?

EGU-2020 – ©ESTU All rights reserved

1. Introduction (3) Sources of uncertainty

Prediction of 1400 Hydrological **Forcing variables** 1200 System (HS) are often poor due to Model structure / 1000 parameters Initial nflow [m3/s] 800 conditions, 600 nitial conditions □ Forcing errors, Inadequate model structure and parameters 50 100 150 200 250 300 350 400 0 time [hr]

"Both model predictions and observations are IMPERFECT and we wish to use both synergistically to obtain a more accurate result". (Walker & Hoser, 2007)

1. Introduction (4) Data Assimilation (DA)

6

Image: Image:

2. Methodology: Var-DA (1) **DA challenge**

7

The purpose is to improve the initial state of the model, which later makes a forecast for the next time step.

<u>Given:</u> a (noisy) model of system dynamics Find: the best estimates of system states X from (noisy) observations Z.

EGU-2020 – ©ESTU All rights reserved

2. Methodology: MP-VarDA (1) The aim of the study

- The uncertainties of the model structure is very important since in each implementation of DA same model and same parameter sets are used.
- □ In this study, the problem is re-analyzed by considering both:
 - improving initial conditions
 - considering model uncertainty

to improve the modelled discharges and snow cover data

Method: Hydrological Model + Multi-parametric Variational DA

2. Methodology: Hydrological Model (1) Conceptual Model: HBV

9

HBV hydrological model is used for rainfall-runoff relationship:

Forcing (model inputs):

- Precipitation (P)
- Temperature (T)
- Potential Evapotranspiration (PET)

State variables:

- Snow water equivalent (SWE)
 (snow pack SP + water content WC)
- Interception storage (IC)
- Soil moisture (SM)
- Upper zone storage (UZ)
- Lower zone storage (LZ)

Output variables:

- Discharge (Q)

Schematic structure of HBV-96 model (Lindström et al., 1997)

2. Methodology: Imp. of DA into HBV (1) MP-VarDA implementation by MHE

The implementation of the HBV model follows:

• x, y, d are the state, output and external forcing vectors, respectively,

$$x^k = f\left(x^{k-1}, u^k, d^k, p\right)$$

- $y^k = g(x^k, v^k, d^k, p)$
- u, v are noise terms, p is the model parameters vector, f() and g() are functions representing arbitrary linear or non-linear components of the model, and
- k is the time step index.

MP-VarDA to assimilate information into a pool of M number of model instances, according to below Objective Function & Constraints

$$\begin{split} \min_{u,v} \sum_{m=1}^{M} \left(p_m \sum_{k=-N+1}^{0} \left(w_x \| \hat{x}^k - x^{k,m}(u) \| + w_y \| \hat{y}^k - y^{k,m}(u,v) \| + w_u \| u^k \| + w_v \| v^k \| \right) \right) \\ u_L &\leq u^k \leq u_U \\ v_L &\leq v^k \leq v_U \end{split}$$

Alvarado-Montero et al., 2017

EGU-2020 – © ESTU All rights reserved

2. Methodology: Imp. of DA into HBV (2) MP-VarDA implementation by MHE

11

Model Pool

Generalized Likelihood Uncertainty Estimation (GLUE) (Beven, 2009) is used to create a model pool based on previously calibrated model. the modified

3. Model Setup (1) Selected pilot basin

Large dam reservoirs (Keban, Karakaya, Atatürk...) are located at the downstream of the basin_{EGU-2020} –©ESTU All rights reserved

3. Model Setup (2) Data

- Ground Data: 18 Climate & AWOS (+2000m)
- \square 10 elevation zones (within 1125 3487 m)
- I land use type
- Model inputs:
 - Precipitation
 - Temperature
 - Potential Evapotranspiration
- Model outputs:
 - Discharge
 - SWE and Snow Covered Area (SCA)

3. Model setup (3) Model parameters

- 14
- Calibrated btw 01/10/2001 to 30/09/2008 (NSE* of 0.84)
- Validated btw 01/10/2008 to 30/09/2012 (NSE* of 0.74)

Daily Observed and simulated discharge with the HBV model for the calibration period

*Nash-Sutcliffe Efficiency (NSE)

EGU-2020 – ©ESTU All rights reserved

3. Model setup (4) Snow Cover Area (SCA) MODIS

15

- Temporal Resolution: Daily
- Spatial Resolution: 500 m

Şorman et al., 2019

EGU-2020 - ©ESTU All rights reserved

4. MP-VarDA Application (1)

- Results are conducted for: VarDA (Uysal et al. 2019) & MP-VarDA
- Test simulation: 2007 (demo)
- Hindcasting period:
 - 2015-2016 (2 water years)
- Assimilated observations:
 - Only Discharge (Q)
 - Q & SCA (MODIS)
- Forcings:
 - Perfect forecast (Prec., Temp.)
- Warm-up (+ assimilation window in VarDA and MP-VarDA)
 - 180 days
- □ Lead time:
 - **1**0 days

4. MP-VarDA Application (2)

- Noise terms introduced both for forcings and states
- Variables and objective function terms in the MHE
- Observation uncertainty: Q, SCA, Q+SCA

Variable		Objective Function Term
Model Inputs	Precipitation (P)	$w_P(\Delta P^k)^2$
Woder inputs	Temperature (<i>T</i>)	$w_T(\Delta T^k)^2$
	Snow Water Equivalent ($SWE = SP + WC$)	$w_{SWE}(\hat{s}_{SWE}^k - s_{SWE}^k)^2$
Model States	Soil Moisture (SM)	$w_{SM}(\hat{s}_{SM}^k - s_{SM}^k)^2 + w_{\Delta SM}(\Delta s_{SM}^k)^2$
	Upper Zone Storage (UZ)	$W_{\Delta UZ}(\Delta s_{UZ}^k)^2$
	Lower Zone Storage (LZ)	$w_{\Delta LZ} (\Delta s_{LZ}^k)^2$
Model Outputs	Snow Covered Area (SCA)	$w_Q(\hat{A}_{SCA}^k - A_{SCA}^k)^2$
	Discharge (Q)	$w_Q(\hat{Q}^k - Q^k)^2$

4. MP-VarDA Application (3)

Model Interfaces & performance metric

- MP-VarDA Implementation: Deltares RTC-Tools (Schwanenberg and Bernhard, 2013),
- Model performance: Continuous Ranked Probability Skill Score, CRPS.
 - > Zero CRPS is desired.
 - Both for Q (Discharge) and SCA

$$CRPS_{L} = \frac{1}{n} \sum_{k=1}^{n} \left[\int_{-\infty}^{+\infty} \left(F_{t}(y_{k,L}) - \Gamma(y_{k,L} \ge \hat{y}_{k}) \right)^{2} dy \right]$$

where $y_{k,L}$ represents the value of the forecast *k*-*L* with a leadtime *L*, *k* is the indicator of the forecast, *n* is the number of ensembles, *F* is the cumulative distribution function, and Γ is a function which assumes probability 1 for values higher or equal to the observation and 0 otherwise.

5. Results & Comparison (1)

Generating model pool (parameter instances)

19

- □ Single Model Pool is derived by GLUE (Beven, 2009)
- □ 1000 Monte Carlo simulation (F_{var} =30%)
- Later, the parameters are reduced to five instances based on two different (FF and AD) techniques and 3 random selection.

5. Results & Comparison (2) (example from 2007 water year, NoDA)

20

Multi-parametric modelling simulation application using model pool parametrization (5 instances)

5. Results & Comparison (3) Ensemble discharge forecasts

- Figure represents different time step ensemble discharge forecasts based on MP-VarDA updates for the initial states.
- MP-VarDA can provide more robust results by having probabilistic initial states (covering initial state uncertainty) and ensemble forecasts (covering model based uncertainty) rather than single trajectory generated by VarDA method.

5. Results & Comparison (4) Comparison of VarDA & MP-VarDA (2009-2012) (Assimilation of Q observations)

1.00 0.00

0

24

48

72

96

120 144

Lead Time (hours)

168

Q (m ³ /s)	Q (mm/day)
10	0.08
100	0.84
1000	8.43
Q (mm/day)	Q (m ³ /s)
0.03	3.56
1.00	100.00
1.50	1000.00

Note; VarDA crps=mae (since not ensemble method) EGU-2020 –©ESTU All rights reserved

192 216 240

5. Results & Comparison (5) Comparison of VarDA & MP-VarDA (2009-2012) (Assimilation of Q & SCA observations)

0

24

48

72

96

120

Lead Time (hours)

144

168

192 216 240

Q (m ³ /s)	Q (mm/day)		
10	0.08		
100	0.84		
1000	8.43		
Q (mm/day)	Q (m ³ /s)		
0.03	3.56		
1.00	100.00		
1.50	1000.00		

Note; VarDA crps=mae (since not ensemble method) EGU-2020 –©ESTU All rights reserved

6. Conclusion (1)

1. Uncertainty

Even providing perfect input to the model, the model outputs contain many uncertainties due to model and observation errors.

2. Data Assimilation

The study is conducted to improve the consistency of the streamflow forecasts with the observations, thus variational data assimilation technique is improved. And the model is tested in a mountainous basin where major part of the discharge is originated from snow melting.

3. Various observations

Applied DA techniques consider not only discharge but also snow observations provided from satellites (MODIS products).

6. Conclusion (2)

- Preliminary results show that consideration of model pool in VarDA (which turns to a stochastic approach) provides better discharge performances.
- Snow observations (MODIS SCA products) in DA together with discharge requires further analyses.
- Both methods (VarDA & MP-VarDA) are better compared to No DA control simulation.

5. Lead time performance

Due to the nature of initial conditions, the performance of the result decreases with respect to lead time.

6. Outlook

- a. The models desired to be extended using NWP (deterministic & probabilistic) for real time forecasting application.
- b. Improved forecasts will be main input to reservoir control models for better decision making! EGU-2020 –©ESTU All rights reserved

References

- Alvarado-Montero R., Schwanenberg, D., Krahe, P., Lisniak, D., Sensoy, A., Sorman, A.A., and Akkol, B., (2016). "Moving Horizon Estimation for Assimilating H-Saf Remote Sensing Data into the HBV Hydrological Model", Advances in Water Resources, 248-257, (92).
- Alvarado-Montero, R., Schwanenberg, D., Krahe, P., Helmke, P., & Klein, B. (2017). Multiparametric variational data assimilation for hydrological forecasting. Advances in Water Resources, 110, 182-192.
- Beven, K. (2009). Environmental modelling: An uncertain future?. CRC press.
- Houser, P.R, De Lannoy, G.J.M., Walker, J.P. (2012) Hydrologic Data Assimilation, In book: Approaches to Managing Disaster - Assessing Hazards, Emergencies and Disaster Impacts, DOI: 10.5772/31246.
- Lindström, G., Johansson, B., Persson, M., Gardelin, M., and Bergström, S., (1997). "Development and Test of the Distributed HBV-96 Hydrological Model", Journal of Hydrology, 272–288, (201).
- Schwanenberg, D, Bernhard, B., (2013), "RTC-Tools Reference Manual", <u>http://oss.deltares.nl/documents/102774/467082/rtc-tools_UserManual.pdf</u>
- Şorman, A. A., Uysal, G., & Şensoy, A. (2019). Probabilistic snow cover and ensemble streamflow estimations in the Upper Euphrates Basin. Journal of Hydrology and Hydromechanics, 67(1), 82-92.
- Uysal, G. ,Alvarado-Montero, R., Şorman, A.A., Şensoy, A. (2019) Sequential and Variational Assimilation of Snow Data Through A Conceptual Hydrological Model in a Mountainous Catchment, Satellite inspired hydrology in an uncertain future: a H SAF and HEPEX workshop, ECMWF, 25-29 Nov 2019, Reading/UK.

THANK YOU FOR YOUR ATTENTION

The study is conducted in collobration:
Short Term Scientific Mission (STSM) of ES1404 COST Project
<u>www.harmosnow.eu</u>

A European network for a harmonised monitoring of snow for the benefit of climate change scenarios, hydrology and numerical weather prediction

ESSEM COST Action ES1404

