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Progresses and gaps on monitoring of snow and its components at the local-, 
regional to global scale and its applications to support weather, hydrological and 
climate science, as well as monitoring of natural hazards
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1. Introduction (1)

Satellite based data…
3

Houser et al. (2012)



1. Introduction (2)

How to produce a forecast?
4

Observations

Model

Meteorological 

inputs
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conditions

Forecast 

(simulation)
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parametersstructure

EVERYWHERE! 

Indicate the sources of uncertainty!
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1. Introduction (3)

Sources of uncertainty
5

Prediction of 
Hydrological 
System (HS) are 
often poor due to

 Initial 
conditions,

 Forcing errors,

 Inadequate 
model structure 
and parameters

‘‘ Both model predictions and observations are IMPERFECT and we 

wish to use both synergistically to obtain a more accurate result’’. (Walker & Hoser, 2007)



1. Introduction (4)

Data Assimilation (DA)
6

 …holds considerable potential for improving

hydrological predictions….

information present in

imperfect models

physically consistent

representations

uncertain data estimates of the dynamical

behavior of a systemoptimal

to produce 
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2. Methodology: Var-DA (1)

DA challenge

Variational Data Assimilation (VarDA): 

❑ Correction of initial conditions of a 
model and obtaining the best overall fit 
of the state to the observations by 
minimizing over space and time an 
objective function

❑ Behavior of the system is driven by 
accuracy of initial conditions.

7

The purpose is to improve the initial state of the model, which later makes a

forecast for the next time step.

Given: a (noisy) model of system dynamics

Find: the best estimates of system states X from (noisy) observations Z.

Houser et al. (2012)

Question: Can we 

merge DA with model 

uncertainty?
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2. Methodology: MP-VarDA (1)

The aim of the study 
8

 The uncertainties of the model structure is very important since

in each implementation of DA same model and same parameter

sets are used.

 In this study, the problem is re-analyzed by considering both:

 improving initial conditions

 considering model uncertainty

to improve the modelled discharges and snow cover data

 Method: Hydrological Model + Multi-parametric Variational DA
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2. Methodology: Hydrological Model (1)

Conceptual Model: HBV
9

HBV hydrological model is used for rainfall-runoff 
relationship:

Forcing (model inputs): 

- Precipitation (P)

- Temperature (T)

- Potential Evapotranspiration (PET)

State variables:

- Snow water equivalent (SWE)
(snow pack SP + water content WC)

- Interception storage (IC)

- Soil moisture (SM)

- Upper zone storage (UZ)

- Lower zone storage (LZ)

Output variables:

- Discharge (Q)

Schematic structure of HBV-96 model (Lindström et al., 1997)



The implementation of the HBV model follows: 

MP-VarDA to assimilate information into a pool of M number of model 

instances, according to below Objective Function & Constraints

2. Methodology: Imp. of DA into HBV (1)

MP-VarDA implementation by MHE
10

Alvarado-Montero et al., 2017

• x, y, d are the state, output and external forcing 

vectors, respectively, 

• u, v are noise terms, p is the model parameters 

vector, f() and g() are functions representing 

arbitrary linear or non-linear components of the 

model, and 

• k is the time step index.
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 Model Pool

Generalized Likelihood Uncertainty Estimation (GLUE) 

(Beven, 2009) is used to create a model pool based on 

previously calibrated model.

2. Methodology: Imp. of DA into HBV (2)

MP-VarDA implementation by MHE
11

Alvarado-Montero et al., 2017

a variation factor

the parameter i of the

calibrated set

the modified 

parameter bounded to 

the lower and upper 

bounds

Parameters are

generated using

Monte-Carlo 

approach
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3. Model Setup (1)

Selected pilot basin
12

Karasu catchment, Turkey:

Mean average discharge: 84.4 m3/s

Area: 10,275 km2

Covered by pasture, shrub and grass

Elevation between 1125 and 3487 m 

(ASL)

 Large dam reservoirs (Keban, Karakaya, Atatürk…)
are located at the downstream of the basinEGU-2020 –©ESTU All rights reserved 



3. Model Setup (2)

Data
13

 Ground Data: 18 Climate & AWOS (+2000m)

 10 elevation zones (within 1125 – 3487 m)

 1 land use type

❑ Model inputs:

❖ Precipitation

❖ Temperature

❖ Potential Evapotranspiration

❑ Model outputs:

❖ Discharge

❖ SWE and Snow Covered Area (SCA)
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3. Model setup (3)

Model parameters
14

• Calibrated btw 01/10/2001 to 30/09/2008 (NSE* of 0.84) 

• Validated btw 01/10/2008 to 30/09/2012  (NSE* of 0.74) 

Daily Observed and simulated discharge with the HBV model for the calibration period 

*Nash-Sutcliffe Efficiency (NSE) EGU-2020 –©ESTU All rights reserved 



3. Model setup (4)

Snow Cover Area (SCA) MODIS
15

 Temporal Resolution: Daily

 Spatial Resolution: 500 m

Şorman et al., 2019
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4. MP-VarDA Application (1)

16

 Results are conducted for: VarDA (Uysal et al. 2019) & MP-
VarDA

 Test simulation: 2007 (demo)

 Hindcasting period: 
 2015-2016 (2 water years)

 Assimilated observations: 
◼ Only Discharge (Q)

◼ Q & SCA (MODIS)

 Forcings:
 Perfect forecast (Prec., Temp.)

 Warm-up (+ assimilation window in VarDA and MP-VarDA)
 180 days

 Lead time: 
 10 days
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4. MP-VarDA Application (2)

17

 Noise terms introduced both for forcings and states

 Variables and objective function terms in the MHE

 Observation uncertainty: Q, SCA, Q+SCA

Variable Objective Function Term 

Model Inputs 
Precipitation (P) 

2( )k

Pw P  

Temperature (T) 
2( )k

Tw T  

Model States 

Snow Water Equivalent  

(SWE = SP + WC) 
2ˆ( )k k

SWE SWE SWEw s s−  

Soil Moisture (SM) 
2 2ˆ( ) ( )k k k

SM SM SM SM SMw s s w s− +   

Upper Zone Storage (UZ) 
2( )k

UZ UZw s   

Lower Zone Storage (LZ) 
2( )k

LZ LZw s   

Model Outputs 

Snow Covered Area (SCA) 
2ˆ( )k k

Q SCA SCAw A A−  

Discharge (Q) 
2ˆ( )k k

Qw Q Q−  

 1 
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4. MP-VarDA Application (3)

Model Interfaces & performance metric
18

 MP-VarDA Implementation: Deltares RTC-Tools (Schwanenberg

and Bernhard, 2013),

 Model performance: Continuous Ranked Probability Skill Score,

CRPS.

➢ Zero CRPS is desired.

➢ Both for Q (Discharge) and SCA

𝐶𝑅𝑃𝑆𝐿 =
1

𝑛


𝑘=1

𝑛

න

−∞

+∞

𝐹𝑡 𝑦𝑘,𝐿 − Γ 𝑦𝑘,𝐿 ≥ ො𝑦𝑘
2
𝑑𝑦

where yk,L represents the value of the forecast k-L with a leadtime L, k is the

indicator of the forecast, n is the number of ensembles, F is the cumulative

distribution function, and Г is a function which assumes probability 1 for

values higher or equal to the observation and 0 otherwise.
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5. Results & Comparison (1)

Generating model pool (parameter instances)

 Single Model Pool is derived by GLUE (Beven, 2009)

 1000 Monte Carlo simulation (Fvar=30%)

 Later, the parameters are reduced to five instances based on two 
different (FF and AD) techniques and 3 random selection.

19
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5. Results & Comparison (2)

(example from 2007 water year, NoDA)

20

 Multi-parametric modelling simulation application using 

model pool parametrization (5 instances)
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5. Results & Comparison (3)

Ensemble discharge forecasts 
21

 Figure represents different time step ensemble discharge forecasts

based on MP-VarDA updates for the initial states.

 MP-VarDA can provide more robust results by having probabilistic

initial states (covering initial state uncertainty) and ensemble

forecasts (covering model based uncertainty) rather than single

trajectory generated by VarDA method.

Q
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5. Results & Comparison (4)

Comparison of VarDA & MP-VarDA (2009-2012)

(Assimilation of Q observations)
22

Q (m3/s) Q (mm/day)

10 0.08

100 0.84

1000 8.43

Q (mm/day) Q (m3/s)

0.03 3.56

1.00 100.00

1.50 1000.00

Note;

VarDA crps=mae 

(since not ensemble 

method)
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5. Results & Comparison (5)

Comparison of VarDA & MP-VarDA (2009-2012)

(Assimilation of Q & SCA observations)
23

Q (m3/s) Q (mm/day)

10 0.08

100 0.84

1000 8.43

Q (mm/day) Q (m3/s)

0.03 3.56

1.00 100.00

1.50 1000.00

Note;

VarDA crps=mae 

(since not ensemble 

method)
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1. Uncertainty
Even providing perfect input to the model, the model outputs contain

many uncertainties due to model and observation errors.

2. Data Assimilation
The study is conducted to improve the consistency of the streamflow

forecasts with the observations, thus variational data assimilation

technique is improved. And the model is tested in a mountainous

basin where major part of the discharge is originated from snow

melting.

3. Various observations
Applied DA techniques consider not only discharge but also snow

observations provided from satellites (MODIS products).

6. Conclusion (1)

EGU-2020 –©ESTU All rights reserved 
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4. Added value of MP-VarDA
• Preliminary results show that consideration of model pool in

VarDA (which turns to a stochastic approach) provides better

discharge performances.

• Snow observations (MODIS SCA products) in DA together with

discharge requires further analyses.

• Both methods (VarDA & MP-VarDA) are better compared to No

DA control simulation.

5. Lead time performance
Due to the nature of initial conditions, the performance of the result

decreases with respect to lead time.

6. Outlook
a. The models desired to be extended using NWP (deterministic &

probabilistic) for real time forecasting application.

b. Improved forecasts will be main input to reservoir control models

for better decision making!

6. Conclusion (2)
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The study is conducted in collobration:

 Short Term Scientific Mission (STSM) of ES1404 COST Project

www.harmosnow.eu

gokcenuysal@eskisehir.edu.tr 
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