Delta res

EGUSssay 2020 oo

MULTI-PARAMETRIC VARIATIONAL
DATA ASSIMILATION OF MODIS SNOW
COVER DATA THROUGH HBV MODEL IN

MOUNTAINOUS UPPER EUPHRATES

RIVER CATCHMENT

Aynur SENSOY1?, Gokcen UYSAL! Rodolfo ALVARADO-MONTERO?
1 Eskisehir Technical University, Civil Engineering, Turkey

2 Operational Water Management, Deltares, Netherlands

A European network for a harmonised monitoring of snow for the benefit of
climate change scenarios, hydrology and numerical weather prediction

_ Progresses and gaps on monitoring of snow and its components at the local-,
Online | 4-8 May 2020 J regional to global scale and its applications to support weather, hydrological and

climate science, as well as monitoring of natural hazards



Outline

2 f

1.Introduction
2.Methodology

o Multi-parametric VarDA (MP-VarDA)

o Hydrological model (HBV)
3.Study Area, Data, Model

o Upper Euphrates Basin

o Data (Hydro-meteorological & Satellite)

o Hydrological model application
4.Implementation of MP-VarDA Application
5.Results & Comparison

6.Conclusion

EGU-2020 —©ESTU All rights reserve d



1. Introduction (1)
Satellite based data...

~s ] |

Houser et al. (2012)

Class Observation Ideal Technique Ideal Time Scale Isdeal Space|Currently available
cale data
Land cover/change |optical/IR daily or changes |1km AVHRR, MODIS,
NPOESS
Leat area & greenness |optical /IR daily or changes |1km AVHRR, MODIS,
NPOESS
Parameters s 1. 4, optical /IR daily or changes |1km MODIS, NPOESS
Emissivity optical /IR daily or changes |1km MODIS, NPOESS
Vegetation structure |lidar daily or changes |100m ICESAT
Topography in-situ survey, radar |[changes lm-1km JGTOPO30, SRTM
Precipitation microwave/IR howly 1km |TRMM, GPM, SSMI,
GEQ-IR, NPOESS
Wind profile Radar howly 1km IQuicksCAT
Air humidity & temp |IR, microwave howly 1km TOVS, AIRS, GOES,
Forcings MODIS, AMSR
Surface solar radiation |optical /IR hourly 1km GOES, MODIS,
CERES, ERBS
Surface LW radiation IR howtly 1km IGOES, MODIS,
CERES, ERBS
Soil moisture microwave, IR daily 1km SSMI, AMSR, SMOS,
change NPOESS, TRMM
Temperature IR, in-situ houwrly-monthly |1km IR-GEO, MODIS,
AVHRR _TOVS
Snow cover or SWE  |optical, microwave |daily or changes |10m-100m |SSMI, MODIS, AMSR,
States AVHRR, NPOESS
Freeze/thaw radar daily or changes |10m-100m JQuickscat, IceSAT,
C1ryvoSAT
Ice cover radar, lidar daily or changes |10m-100m JIceSAT, GLIMS
Inundation optical/microwave |daily or changes |100m MODIS
Total water storage  |gravity changes 10km IGRACE
Evapotranspiration  |optical /IR, in-situ _ |howly 1km MODIS, GOES
Streamflow microwave, laser hourly 1m-10m ERS2, TOPEX /
POSEIDON, GRDC
Carbon tlux In-situ hourly 1km In-situ
Fluxes Solar radiation optical, IR hourly 1km MODIS, GOES,
CERES, ERBS
Longwave radiation |optical, IR howly 1km MODIS, GOES
Sensible heat flux IR hourly 1km MODIS, ASTER,
JGOES

Table 1. Characteristics of remotely sensed hydrological observations potentially available
within the next decade.




1. Introduction (2)
How to produce a forecast?
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EGU-2020 —©ESTU All rights reserved



1. Introduction (3)

Sources of uncertainty
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“Both model predictions and observations are IMPERFECT and we
wish to use both synergistically to obtain a more accurate result”. (Walker & Hoser, 2007)



1. Introduction (4)

Data Assimilation (DA)
N

o ...holds considerable potential for Improving
hydrological predictions....

information present in A

imperfect models —

tmodels |
physically consistent
I to produce| representations
uncertain data estimates of the dynamical

behavior of a system
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2. Methodology: Var-DA (1)

DA challenge
S

The purpose is to improve the initial state of the model, which later makes a

forecast for the next time step.

Analysis

Model Forecast

Given: a (noisy) model of system dynamics
Find: the best estimates of system states X from (noisy) observations Z.

Variational Data Assimilation (VarDA):

a

State value

(b)

Correction of initial conditions of a
model and obtaining the best overall fit
of the state to the observations by
minimizin% over space and time an
objective function

Behavior of the system is driven by
accuracy of initial conditions.
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Question: Can we
= merge DA with model
uncertainty?

Houser et al. (2012)
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2. Methodology: MP-VarDA (1)
The aim of the study

0 The uncertainties of the model structure is very important since

In each implementation of DA same model and same parameter

sets are used.

0 In this study, the problem is re-analyzed by considering both:
O improving initial conditions
o considering model uncertainty

to improve the modelled discharges and snow cover data

0 Method: Hydrological Model + Multi-parametric Variational DA
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2. Methodology: Hydrological Model (1)

Conceptual Model: HBV

HBV hydrological model is used for rainfall-runoff
relationship:

Forcing (model inputs):

- Precipitation (P)

- Temperature (T)

- Potential Evapotranspiration (PET)

State variables:

- Snow water equivalent (SWE)
(snow pack SP + water content WC)

- Interception storage (IC)

- Soil moisture (SM)

- Upper zone storage (UZ2)
- Lower zone storage (LZ2)

Output variables:
- Discharge (Q)

T,EP
k. |

—w 0
0 FC 0
RAIN = (ST )8 ETA EA=

Hi

UZHQ

Qp=KuzZ (+ALFA)

HQ = KHQ"UZ b

P = Precipitation

T = Tem perature

SF = Snow

RF = Rain

Z = Elevation

PCALTL = Threshaold for altitude correction
TTI = Threshaold tem perature interval

IM = Infiltration

EP = Potential evapotranspiration

E & = Actual evapotranspiration

El = Evaporation from interception

SM = Soil moisture storage

FC = Maximum soil moisture storage

LP = Lim# for potential evapotranspiration

SMFCTER SM < LP
A= EP Shl ZLP

BE TA = Soll param eter

R = Recharge

CFLUX = Capillary transpart

UZ = Storage in upper response box
LZ = Storage in lower response box
PERC = Percalation

KK, = Recession parameters
ALFA = Recession param eter
Qq , @, = Runoff com ponents
H& = High flow parameter
KHQ = Recession atHQ

Ha _=UZIlevelat HQ

Schematic structure of HBV-96 model (Lindstrom et al., 1997)



2. Methodology: Imp. of DA into HBV (1)
MP-VarDA implementation by MHE

I
The implementation of the HBV model follows:

* X, Y, dare the state, output and external forcing

vectors, respectively
k — k-1, k gk y €5 o
X = f(x ,us,d ,P) e u, v are noise terms, p is the model parameters
vector, f() and g() are functions representing
arbitrary linear or non-linear components of the
k _ k .,k gk
y = g(x y U rd rp) model, and

« ks the time step index.

MP-VarDA to assimilate information into a pool of M number of model
instances, according to below Objective Function & Constraints
~ ~ k

M 0
. Y - k
min E {pm E (Vlrx J v )}
k=—N+1

k. k. k
v — X ”’(u)H+w1_ ye—=y" (u,v)H+w”||u H+w1.
.y i
m=1

u; < uf <uy

v, < vk <y

Alvarado-Montero et aI., 2017 EGU-2020 —©ESTU All rights reserved



2. Methodology: Imp. of DA into HBV (2)
MP-VarDA implementation by MHE

S
o Model Pool

Generalized Likelihood Uncertainty Estimation (GLUE)
(Beven, 2009) is used to create a model pool based on

previously calibrated model. the modified
parameter bounded to
a variation factor the lower and upper
) bounds

| | *

_pi,cal * Fvar = pi,m * pi,cal * Fvar

PiL =DPim = Piv Parameters are
- generated using

the parameter i of the Monte-Carlo

calibrated set approach

Alvarado-Montero et al., 2017
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3. Model Setup (1)
Selected pilot basin
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3. Model Setup (2)
Data
N
o Ground Data: 18 Climate & AWQOS (+2000m)
0 10 elevation zones (within 1125 — 3487 m)

o 1 land use type

2 Model inputs:
« Precipitation
<« Temperature
« Potential Evapotranspiration
2 Model outputs:
« Discharge
<+ SWE and Snow Covered Area (SCA)
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3. Model setup (3)

Model parameters

‘4 y
» Calibrated btw 01/10/2001 to 30/09/2008 (NSE* of 0.84)

* Validated btw 01/10/2008 to 30/09/2012 (NSE* of 0.74)

——Observed Runoff ——Modelled Runoff
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Daily Observed and simulated discharge with the HBV model for the calibration period

*Nash-Sutcliffe Efficiency (NSE) EGU-2020 —©ESTU Al rights reserved



3. Model setup (4)
Snow Cover Area (SCA) MODIS
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4. MP-VarDA Application (1)

2 4
o Results are conducted for: VarDA (Uysal et al. 2019) & MP-
VarDA
o Test simulation: 2007 (demo)
o Hindcasting period:
o 2015-2016 (2 water years)

o Assimilated observations:
m Only Discharge (Q)
m Q & SCA (MODIS)

o Forcings:
o Perfect forecast (Prec., Temp.)

o Warm-up (+ assimilation window in VarDA and MP-VarDA)
o 180 days .

0 Lead time: )
o 10 days
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4. MP-VarDA Application (2)

I
o Noise terms introduced both for forcings and states
o Variables and objective function terms in the MHE
o Observation uncertainty: Q, SCA, Q+SCA

Variable Objective Function Term
Precipitation (P) W, (AP*)?
Model Inputs
Temperature (T) W, (AT*)?
Snow Water Equivalent We o (8 sk Y
(SWE = Sp + WC) SWE \~“SWE SWE
Soil Moisture (SM) Wy, (S8 —Seu )” +W,gy (ASS, )

Model States

Upper Zone Storage (UZ) Wy, (AS,)?

Lower Zone Storage (LZ) W, , (Asf,)’

Snow Covered Area (SCA) | W, (A, — A',)?
Model Outputs

Discharge (Q) w, (QF —Q¥)?
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4. MP-VarDA Application (3)
Model Interfaces & performance metric
S
o MP-VarDA Implementation: Deltares RTC-Tools (Schwanenberg
and Bernhard, 2013),

o Model performance: Continuous Ranked Probability Skill Score,
CRPS.

» Zero CRPS is desired.
» Both for Q (Discharge) and SCA

n [ +o ]

1 2
crPS, =3 | [ (Felvma) = Tves = 94))
k=1|- i

where y, , represents the value of the forecast k-L with a leadtime L, k is the
indicator of the forecast, n is the number of ensembles, F is the cumulative
distribution function, and [ is a function which assumes probability 1 for

values higher or equal to the observation and 0 otherwise.
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5. Results & Comparison (1)

Generating model pool (parameter instances)

I
o Single Model Pool is derived by GLUE (Beven, 2009)
o 1000 Monte Carlo simulation (F,,,=30%)

o Later, the parameters are reduced to five instances based on two
different (FF and AD) techniques and 3 random selection.
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5. Results & Comparison (2)
(example from 2007 water year, NoDA)
.20 4
o Multi-parametric modelling simulation application using
model pool parametrization (5 instances)
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5. Results & Comparison (3)

Ensemble discharge forecasts
T 1
o Figure represents different time step ensemble discharge forecasts
based on MP-VarDA updates for the initial states.

o MP-VarDA can provide more robust results by having probabilistic
Initial states (covering initial state uncertainty) and ensemble
forecasts (covering model based uncertainty) rather than single
trajectory generated by VarDA method.
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525,000

Discharge (m3/s)
N "

28032007 01042007 05-04-2007 09042007 13-04-2007 17-04-2007 21-04-2007 25-04-2007 29-04-2007 03-05-2007 07-05-2007 11-05-2007 15-05-2007 15-05-2007 23-05-2007 27-05-2007 31»;:@@&3@029%@5@8"’[_} A” rlghts reserved



5. Results & Comparison (4)
Comparison of VarDA & MP-VarDA (2009-2012)

Assimilation of O observations

A1l Assimilation of Q (Karasu) - Q stats
| —e—No_DA Only QVarDA  =e=0nly Q MP-VarDA |
0.25
0.20 S S )
g A2 Assimilation of Q (Karasu) - SCA stats
E—OJS | —e—No_DA Only QVarDA =®=0nly Q MP-VarDA |
% 10.00
2 010 9.00 -
3 — % < —_——
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0.05 - =
g 7.00 -
£ i
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' ' ' ' ' ' ' ' ' ' ' o 5.00
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Lead Time (hours) z 4.00 4
g 3.00 -
2.00 -
1.00 -
0.00 . . . . . . . . . .
, 0 24 48 72 96 120 144 168 192 216 240
Q(m°/s) Q(mm/day) Lead Time (hours)
10 0.08
100 0.84
1000 8.43 Note
17
Qmm/day)  Q(mYs) Va_erA crps=mae
0.03 3.56 (since not ensemble
1.00 100.00 m ethod)

1.50 1000.00
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5. Results & Comparison (5)
Comparison of VarDA & MP-VarDA (2009-2012)

‘Assimilation of g & SCA observations%
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6. Conclusion (1)

1. Uncertainty

Even providing perfect input to the model, the model outputs contain
many uncertainties due to model and observation errors.

2. Data Assimilation

The study is conducted to improve the consistency of the streamflow
forecasts with the observations, thus variational data assimilation
technique is improved. And the model is tested in a mountainous

basin where major part of the discharge is originated from snow
melting.

3. Various observations

Applied DA techniques consider not only discharge but also snow
observations provided from satellites (MODIS products).

EGU-2020 —©ESTU All rights reserved



6. Conclusion (2)

4. Added value of MP-VarDA

 Preliminary results show that consideration of model pool in
VarDA (which turns to a stochastic approach) provides better
discharge performances.

« Snow observations (MODIS SCA products) in DA together with
discharge requires further analyses.

 Both methods (VarDA & MP-VarDA) are better compared to No
DA control simulation.

5. Lead time performance

Due to the nature of initial conditions, the performance of the result
decreases with respect to lead time.

6. Outlook

a. The models desired to be extended using NWP (deterministic &
probabilistic) for real time forecasting application.

b. Improved forecasts will be main input to reservoir control models
for better decision making!
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The study Is conducted in collobration:

o Short Term Scientific Mission (STSM) of ES1404 COST Project

WWwWWw.harmosnow.eu

A European network for a harmonised monitoring of snow for the benefit of

climate change scenarios, hydrology and numerical weather prediction
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