

MATIETEEN LAITOS ETEOROLOGISKA INSTITUTET NNISH METEOROLOGICAL INSTITUTE

Optical and geometrical properties of Arctic clouds over northern Finland during PaCE campaign in 2019

Xiaoxia Shang^{1,*}, Mika Komppula¹, Elina Giannakaki^{1,2}, Stephanie Bohlmann¹, Maria Filioglou¹, David Brus³

¹Finnish Meteorological Institute, P.O. Box 1627, 70211 Kuopio, Finland ²Department of Environmental Physics and Meteorology, University of Athens, 15784 Athens, Greece ³Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland

*Email: xiaoxia.shang@fmi.fi

SPONSORS

KONE foundation

ACTRIS-2 - the European Union's Horizon 2020 research and innovation programme under grant agreement (No 654109)

ACTRIS PPP - the European Commission under the Horizon 2020 – Research and Innovation Framework Programme

H2020-INFRADEV-2016-2017 (Grant Agreement number: 739530)

Academy of Finland Center of Excellence programme (grant no. 307331)

Motivation

- In the Arctic areas the influence of climate change is being felt at a higher degree than elsewhere.
- Enabling a better understanding of the environment in region is of high importance.
- Clouds play a significant role in the energy budget and the hydrological cycle of the Earth's atmosphere system.

Objective

Field campaign PaCE (Pallas Cloud Experiment)

- > Providing insights into Arctic cloud processes for Arctic cloud-climate studies
- Focusing on aerosol and cloud vertical profiling using in-situ and remote sensing techniques

Measurement site & Instruments

- Kenttärova station (N 67°59'14", E 24°14'35", 347 m above sea level) at Pallas, in the northern Finland.
- September to December, 2019.
- Multi-wavelength Raman polarization lidar Polly^{XT}

Elastic channels	355 nm, 532 nm, 1064 nm
Rotational vibrational Raman channels	387 nm, 607 nm
Linear depolarization channels	355 nm, 532 nm
Water vapor channel	407 nm

EGU 2020 | Shang et al. | 7 May 2020

Geometrical properties

484 layers detected from 288 lidar profiles (2 hours averaged)

4

BY

Case example

BY

Optical properties

Mean values for night-time (265 layers)

LR ₃₅₅ [sr] *	21 ± 6
LR ₅₃₂ [sr] *	25 ± 9
PDR ₃₅₅ [%]	28 ± 16
PDR ₅₃₂ [%]	27 ± 16
Å ext _{355/532} *	-0.1 ± 0.5
Å bsc _{355/532}	0.4 ± 0.8
Ext ₃₅₅ [Mm ⁻¹] *	543 ± 781
Ext ₅₃₂ [Mm ⁻¹] *	571 ± 808
Bsc ₃₅₅ [Mm ⁻¹ sr ⁻¹]	30 ± 46
Bsc ₅₃₂ [Mm ⁻¹ sr ⁻¹]	27 ± 46
Ext: Extinction coefficien	*Effective values

Bsc: Backscatter coefficient

Å bsc: Backscatter-related Ångström exponent

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

0.5

0.4

0.3

0.2

0.1

-1

-0.5

-5

-10

-15

-20

-25

-30

-35 -40

-45

.....

6

()

Optical properties

Mean values for all time (484 layers)

PDR ₃₅₅ [%]	22 ± 17
PDR ₅₃₂ [%]	22 ± 17
Å _{bsc 355/532}	0.6 ± 0.6
Å _{bsc 532/1064}	0.9 ± 0.7
Bsc ₃₅₅ [Mm ⁻¹ sr ⁻¹]	46 ± 74
Bsc ₅₃₂ [Mm ⁻¹ sr ⁻¹]	38 ± 87
Bsc ₁₀₆₄ [Mm ⁻¹ sr ⁻¹]	16 ± 22

Bsc: Backscatter coefficient Å bsc: Backscatter-related Ångström exponent

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

 $\mathbf{\hat{P}}$

BY

-10

-20

-30

-40

-50

-10

-20

-30

-40

-50

-60

Cloud typing

the feature classed.			
	Detected feature		
WD	water droplets	PDR ₅₃₂ ≤ 0.1 Å _{bsc 532/1064} ≤ 0.5	
	likely water droplets	PDR ₅₃₂ ≤ 0.10	
IC	ice crystals	PDR ₅₃₂ ≥ 0.35	
	likely ice crystals	VDR ₅₃₂ ≥ 0.30	
NT	T non-typed (mix-phase, snowfall, etc.)		

Cloud typing and the criteria for

....

......

.....

....

....

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET

FINNISH METEOROLOGICAL INSTITUTE

EGU 2020 | Shang et al. | 7 May 2020

NT

Ì

BY

IC

0

WD

Multiple scattering: case example

Lidar derived vertical profiles of optical properties. These are effective values.

Multiple scattering effects should be corrected for cloud optical properties.

c)__

BY

Conclusion

- Four months campaign provided good dataset for the Arctic cloud
- Optical and geometrical properties of clouds have been determined from lidar analysis.
- A first cloud typing was applied and related properties were retrieved.
- Multiple scattering effect was studied.

Future work

- Multiple scattering correction
- > The temperature and thickness dependencies on optical properties
- Combine the ceilometer measurements
- Combine the drone measurements

