

Model study on effect of hematite and goethite on optical properties of inhomogeneous desert dust aerosols

Josef Gasteiger, Andreas Gattringer, and Bernadett Weinzierl

University of Vienna, Aerosol Physics and Environmental Physics, Faculty of Physics, Wien, Austria (contact: josef.gasteiger@univie.ac.at)

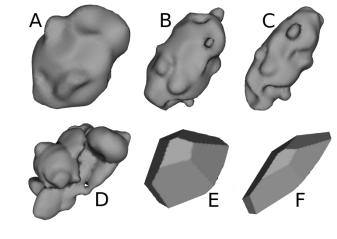
Overview

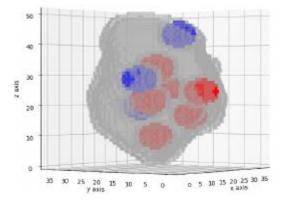
- Optical models usually assume homogeneous desert dust particles [1].
- However: Real dust particles are inhomogeneous consisting of different minerals and light scattering and absorption is affected by the inhomogeneity.
- Hematite and goethite content controls light scattering and absorption by desert dust.

This model-based sensitivity study investigates **effects of the inhomogenous distribution** of hematite and goethite within dust particles **on light scattering and absorption**. First results are shown here.

[1] Exception, e.g., <u>https://doi.org/10.5194/acp-15-12011-2015</u> (Kemppinen et al., 2015)

The model simulations of this study are part of the master thesis of Andreas Gattringer.

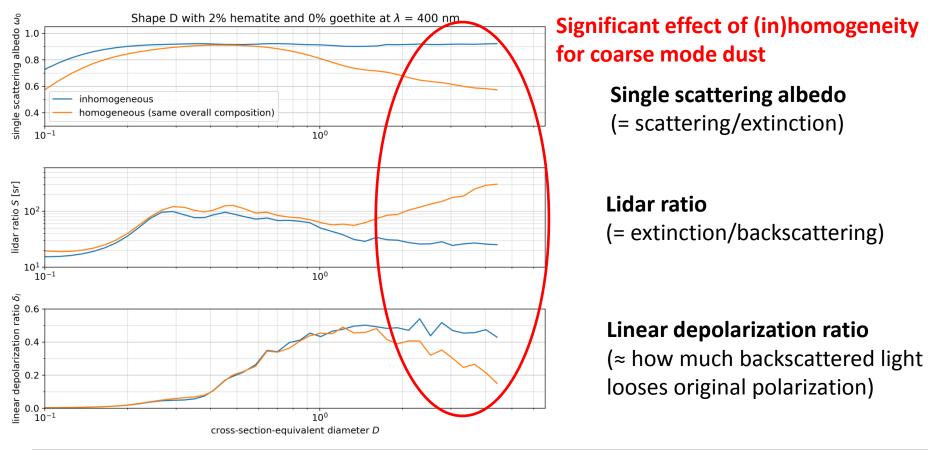




Model simulations

- Discrete dipole approximation code ADDA [1]
- Six irregular dust-like model shapes from MOPSMAP data set [2]
- Size parameter range from 0.001 to 30.2
- Inhomogeneity considered with varying number of goethite and hematite inclusions within irregular shapes
- Non-absorbing base material
- Goethite and hematite refractive index representative for visible wavelengths
- For comparison: Homogeneous particles

[1] <u>https://github.com/adda-team/adda</u>; [2] <u>https://mopsmap.net</u>



D2879 | EGU2020-18006 🖈

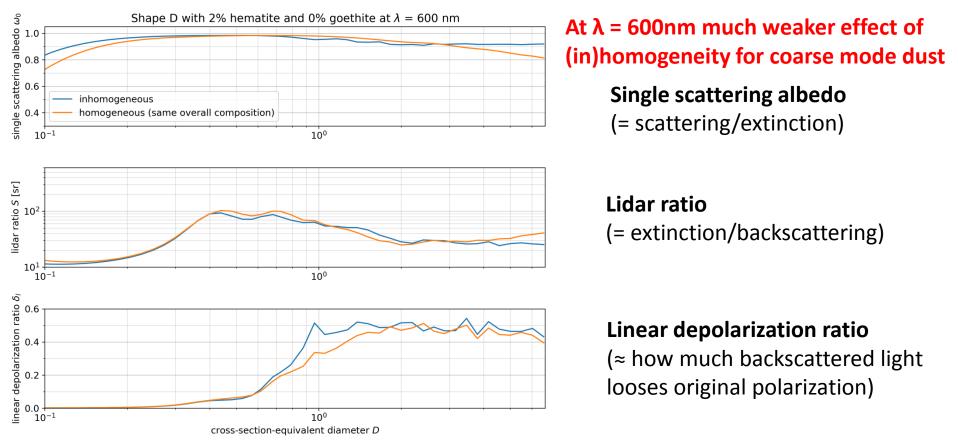
Results: example at short wavelength (2% hematite)

D2879 | EGU2020-18006 🖈

Results: example at short wavelength (2% hematite)

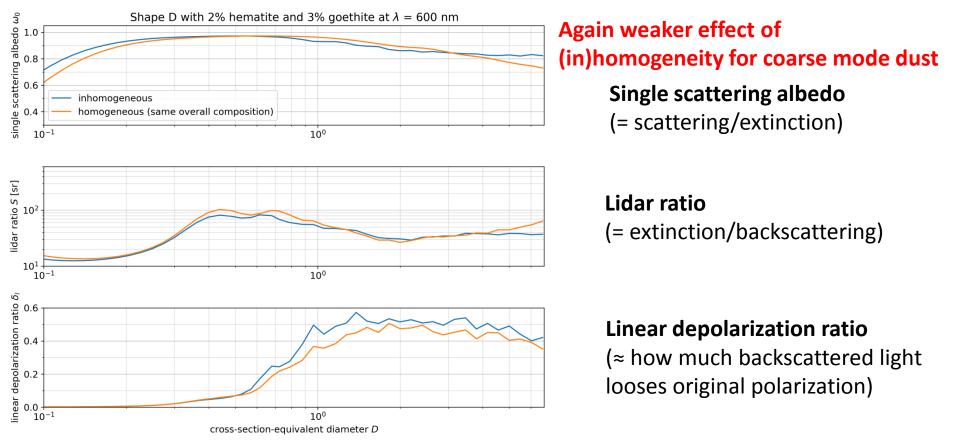
Log-normal distribution with $D_{mod} = 1.0 \ \mu m$, $\sigma = 2.0$, $D_{max} = 4.0 \ \mu m$, $D_{eff} = 2.13 \ \mu m$, shape D, and wavelength 400 nm

Optical parameter	Inhomogeneous dust	Homogeneous dust	Δ
Extinction [arb. unit]	352	350	- 0.6%
Single scattering albedo	0.922	0.696	- 0.226
Asymmetry parameter	0.670	0.800	+ 0.130
Lidar ratio [sr]	30.2	96.1	x 3,18
Linear depolarization	0.483	0.397	- 0.086


Almost four times more absorption!

D2879 | EGU2020-18006 🖈

Results: example at longer wavelength (2% hematite)



D2879 | EGU2020-18006 🖈

Results: example at longer wavelength (2% hematite and additional 3% goethite)

D2879 | EGU2020-18006 🖈

Summary / outlook

- Ongoing sensitivity study investigating effect of dust inhomogeneity on optical dust properties
- Inhomogeneity effect seems particularly strong for absorption and lidar-relevant properties of coarse dust particles at short visible and UV wavelengths. At these wavelengths hematite has a very high imaginary part of the refractive index.
- Extension of MOPSMAP with inhomogeneous dust envisaged

Acknowledgements

Part of this work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 640458, A-LIFE, http://a-life.at).

