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Introduction: the ERA5 global reanalysis dataset 

– Data product of the ECMWF
– global, homogeneous climate dataset
– 31 km resolution, 37 vertical levels,
    hourly
– 1979-present (soon: 1950-present)
– combination of:
  IFS model + 
  observational data + 
  data assimilation
– available through the CDS climate store:

https://cds.climate.copernicus.eu/



the ERA5 dataset from a modellers perspective

ERA5 data is used as modelling resource to (a.o.):

- provide initial conditions to climate experiments
- set boundary conditions for regional simulations
- provide forcings to ocean or land surface models

problem: workflow to get ERA5 data into a model:
download data  convert  save into model format → →

This workflow is time consuming, error prone and generates a lot of 
intermediate data of low reuse value



our solution:
provide an easier way to work with ERA5 by wrapping access to the 

data into a model-centric interface within the OMUSE framework
for Earth System modelling.
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What is OMUSE?

 → Oceanographic Multi-PUrpose Software Environment
 → OMUSE is a Python environment for numerical experiments

      in oceanography and other climate sciences
 → based on AMUSE

Goals:

- provide a homogeneous enviroment
     to run community codes

- enable new code couplings and 
     interactions between components

- facilitate multi-physics and 
     multi-scale simulations 



a short history of AMUSE & OMUSE

- AMUSE has its origins in the 
   astrophysical MODEST community

- developed, with funding from 
   NOVA, NWO and the NLeSC, at 
   Leiden Observatory

- actively being used by 15+ groups worldwide,
     60+ publications, 8+ theses

- 2014 – 2016: NLeSC project @IMAU (Pelupessy, van Werkhoven) 
to generalize this approach   OMUSE→

- OMUSE currently being used in research: Southern Ocean, 
LES-GCM coupling in meteorology, exo-ocean (Titan) &
the stochastic multiscale climate modelling NLeSC project
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from omuse.units import units
from omuse.community.qgmodel.interface import QGmodel
from amuse.io import read_set_from_file

input=read_set_from_file('initial_condition')

code=QGmodel()

code.parameters.dt=0.5 | units.hour
code.grid.psi=input.psi

code.evolve_model(1.| units.day)

print code.grid.psi.max().in_(units.Sv/units.km)

'Hello Ocean'

“imports”

“instantiate code”

“evolve”

“analysis”

“initialize model”

“initial conditions”
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The OMUSE interface: a bird’s eye view

– OMUSE is based on remote code 
    interfaces

– codes run in parallel & calls can be 
    asynchronous

– OMUSE provides a number of 
    interface services: unit handling, data
    structures, code state handling etc..

– the user is presented with uniform high
    level interfaces, which integrates into a 
    scientific python workflow



  

OMUSE data structures 

– high level interface uses grid data structures

– grids have domain specific attributes

– OMUSE improved grid support:

– different grid types
– add grid remapping channels
– add grid (functional) transform 
– (some) grid generation routines
– improved support for large parameter

        sets and files



  

What can you do with OMUSE?

- simplify model setup and runs,

- scripting:
event detection,  
stopping conditions

- 'online' data analysis

- ensemble simulations:
parameters searches
optimizations (e.g. MCMC)
data assimilation

- model comparison: running problems 
   with different codes and methods

- coupling different codes to construct 
   new solvers



  

Code couplings with AMUSE

adcirc = Adcirc()

meteo = netcdf_meteo( "windstress_2001to2010.nc")

channel = meteo.grid.new_channel_to( adcirc.forcings )

while adcirc.model_time<tend:
    meteo.evolve_model( adcirc.model_time + dt )
    channel.copy_attributes( ["tau_x", "tau_y"] )
    adcirc.evolve_model( adcirc.model_time + dt )



  

Hurricane Gustav with a coupled hydrodynamic/ wave model 

channel1=hurricane.grid.new_channel_to( swan.forcings )
channel2=hurricane.grid.new_channel_to( adcirc.forcings )
channel3=adcirc.nodes.new_channel_to( swan.forcings )
channel4=swan.nodes.new_channel_to( adcirc.forcings )
while time<tend:
    hurricane.evolve_model(time+dt/2)
    channel1.copy_attributes(["vx","vy"])
    channel2.copy_attributes(["tau_x","tau_y"])
    adcirc.evolve_model(time+dt/2)
    swan.evolve_model(time+dt/2)
    channel3.copy_attributes(["current_vx","current_vy"])
    channel4.copy_attributes(["wave_tau_x","wave_tau_y"])
    time+=dt

t0+180hr

(Pelupessy+ 2017)



  

The OMUSE ERA5 component 

Python module
from omuse.community.era5.interface import ERA5

Features:
– provides a model-centric view on ERA5 data
– downloads data as needed
– caches the data
– interface follows standards of an OMUSE community code
– data is presented in an OMUSE grid high level data
    structure, with units

 → minimal difference between coupling a model to static
      ERA5 data and a life model.



  

User guide

pip install omuse-era5

from omuse.community.era5.interface import ERA5

era5=ERA5(variables=["2m_temperature", "total_precipitation"],
          invariate_variables=["land_sea_mask", "orography"],
          nwse_boundingbox=[70, -15, 40, 15] | units.deg, 
          grid_resolution=1.0 | units.deg,
          start_datetime=datetime.datetime(1979,1,2) )

era5.evolve_model(1. | units.day)      evolve the “model”←
t2=e.grid._2m_temperature              note the leading ‘_’←

Installation 

(assuming cdsapi has been configured,
more advance use requires a development install of omuse)

example use: 



  

Caveats & Future work

– ERA5 is not a model... 
  → no guarantees on local or global constraints

– view of the dataset is time-slice based (evolve_model)
– currently limited to 2D fields
– accumulations not handled

apart from these shortcomings, need work on:

– more intelligent/efficient data handling
– cache maintenance
– prefetching
– other datasets



Resources

OMUSE-ERA5 PyPI page
 pypi.org/project/omuse-era5/ omuse-era5

OMUSE repository:
github.com/omuse-geoscience/omuse

OMUSE example scripts:
github.com/omuse-geoscience/omuse-examples

OMUSE Code paper:
Pelupessy et al. 2017, GMD 10,  3167
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