
Inti Pelupessy (i.pelupessy@esciencecenter.nl)
 Maria Chertova – Gijs van den Oord - Ben van Werkhoven

Netherlands eScience Center

A model interface for ERA5

EGU2020: Sharing Geoscience Online

Introduction: the ERA5 global reanalysis dataset

– Data product of the ECMWF
– global, homogeneous climate dataset
– 31 km resolution, 37 vertical levels,
 hourly
– 1979-present (soon: 1950-present)
– combination of:
 IFS model +
 observational data +
 data assimilation
– available through the CDS climate store:

https://cds.climate.copernicus.eu/

the ERA5 dataset from a modellers perspective

ERA5 data is used as modelling resource to (a.o.):

- provide initial conditions to climate experiments
- set boundary conditions for regional simulations
- provide forcings to ocean or land surface models

problem: workflow to get ERA5 data into a model:
download data convert save into model format → →

This workflow is time consuming, error prone and generates a lot of
intermediate data of low reuse value

our solution:
provide an easier way to work with ERA5 by wrapping access to the

data into a model-centric interface within the OMUSE framework
for Earth System modelling.

python
script

python
script

python
script

python
script

OMUSE

python

MPI

Atmosphere

Global circulation
model

Hydrodynamics

Surface
waves

What is OMUSE?

 → Oceanographic Multi-PUrpose Software Environment
 → OMUSE is a Python environment for numerical experiments

 in oceanography and other climate sciences
 → based on AMUSE

Goals:

- provide a homogeneous enviroment
 to run community codes

- enable new code couplings and
 interactions between components

- facilitate multi-physics and
 multi-scale simulations

a short history of AMUSE & OMUSE

- AMUSE has its origins in the
 astrophysical MODEST community

- developed, with funding from
 NOVA, NWO and the NLeSC, at
 Leiden Observatory

- actively being used by 15+ groups worldwide,
 60+ publications, 8+ theses

- 2014 – 2016: NLeSC project @IMAU (Pelupessy, van Werkhoven)
to generalize this approach OMUSE→

- OMUSE currently being used in research: Southern Ocean,
LES-GCM coupling in meteorology, exo-ocean (Titan) &
the stochastic multiscale climate modelling NLeSC project

SWAN wave transport

ADCIRC regional
ocean model

POP global ocean model

QGmodel

QGCM
DALES cloud resolving model

openIFS global atmosphere

current codes in OMUSE

image: Jonker

from omuse.units import units
from omuse.community.qgmodel.interface import QGmodel
from amuse.io import read_set_from_file

input=read_set_from_file('initial_condition')

code=QGmodel()

code.parameters.dt=0.5 | units.hour
code.grid.psi=input.psi

code.evolve_model(1.| units.day)

print code.grid.psi.max().in_(units.Sv/units.km)

'Hello Ocean'

“imports”

“instantiate code”

“evolve”

“analysis”

“initialize model”

“initial conditions”

Python C/C++/Fortran

codenative
interface

lo
w

 le
ve

l

u
ni

t
ha

nd
lin

g

data
model

input
generation

output/
analysis

MPI

simulation
script initialize

 set
data

evolve

 get data

cleanup

MPI_WORLD_COMM

interface services

hi
gh

 le
ve

l i
n

te
rf

ac
e

st
at

e
m

od
e

l

The OMUSE interface: a bird’s eye view

– OMUSE is based on remote code
 interfaces

– codes run in parallel & calls can be
 asynchronous

– OMUSE provides a number of
 interface services: unit handling, data
 structures, code state handling etc..

– the user is presented with uniform high
 level interfaces, which integrates into a
 scientific python workflow

OMUSE data structures

– high level interface uses grid data structures

– grids have domain specific attributes

– OMUSE improved grid support:

– different grid types
– add grid remapping channels
– add grid (functional) transform
– (some) grid generation routines
– improved support for large parameter

 sets and files

What can you do with OMUSE?

- simplify model setup and runs,

- scripting:
event detection,
stopping conditions

- 'online' data analysis

- ensemble simulations:
parameters searches
optimizations (e.g. MCMC)
data assimilation

- model comparison: running problems
 with different codes and methods

- coupling different codes to construct
 new solvers

Code couplings with AMUSE

adcirc = Adcirc()

meteo = netcdf_meteo("windstress_2001to2010.nc")

channel = meteo.grid.new_channel_to(adcirc.forcings)

while adcirc.model_time<tend:
 meteo.evolve_model(adcirc.model_time + dt)
 channel.copy_attributes(["tau_x", "tau_y"])
 adcirc.evolve_model(adcirc.model_time + dt)

Hurricane Gustav with a coupled hydrodynamic/ wave model

channel1=hurricane.grid.new_channel_to(swan.forcings)
channel2=hurricane.grid.new_channel_to(adcirc.forcings)
channel3=adcirc.nodes.new_channel_to(swan.forcings)
channel4=swan.nodes.new_channel_to(adcirc.forcings)
while time<tend:
 hurricane.evolve_model(time+dt/2)
 channel1.copy_attributes(["vx","vy"])
 channel2.copy_attributes(["tau_x","tau_y"])
 adcirc.evolve_model(time+dt/2)
 swan.evolve_model(time+dt/2)
 channel3.copy_attributes(["current_vx","current_vy"])
 channel4.copy_attributes(["wave_tau_x","wave_tau_y"])
 time+=dt

t0+180hr

(Pelupessy+ 2017)

The OMUSE ERA5 component

Python module
from omuse.community.era5.interface import ERA5

Features:
– provides a model-centric view on ERA5 data
– downloads data as needed
– caches the data
– interface follows standards of an OMUSE community code
– data is presented in an OMUSE grid high level data
 structure, with units

 → minimal difference between coupling a model to static
 ERA5 data and a life model.

User guide

pip install omuse-era5

from omuse.community.era5.interface import ERA5

era5=ERA5(variables=["2m_temperature", "total_precipitation"],
 invariate_variables=["land_sea_mask", "orography"],
 nwse_boundingbox=[70, -15, 40, 15] | units.deg,
 grid_resolution=1.0 | units.deg,
 start_datetime=datetime.datetime(1979,1,2))

era5.evolve_model(1. | units.day) evolve the “model”←
t2=e.grid._2m_temperature note the leading ‘_’←

Installation

(assuming cdsapi has been configured,
more advance use requires a development install of omuse)

example use:

Caveats & Future work

– ERA5 is not a model...
 → no guarantees on local or global constraints

– view of the dataset is time-slice based (evolve_model)
– currently limited to 2D fields
– accumulations not handled

apart from these shortcomings, need work on:

– more intelligent/efficient data handling
– cache maintenance
– prefetching
– other datasets

Resources

OMUSE-ERA5 PyPI page
 pypi.org/project/omuse-era5/ omuse-era5

OMUSE repository:
github.com/omuse-geoscience/omuse

OMUSE example scripts:
github.com/omuse-geoscience/omuse-examples

OMUSE Code paper:
Pelupessy et al. 2017, GMD 10, 3167

	Dia 1
	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18

