Lower hybrid waves at the magnetosheath separatrix region

Binbin Tang^{1*}, Wenya Li¹, Daniel Graham², Chi Wang¹, Yuri Khotyaintsev², Barbara L. Giles³, Per-Arne Lindqvist⁴, Robert E. Ergun⁵, Christopher T. Russell⁶, and James L. Burch⁷

(* bbtang@spacewether.ac.cn)

¹ National Space Science Center, CAS, China

² Swedish Institute of Space Physics, Uppsala, Sweden

³ NASA Goddard Space Flight Center, Greenbelt, MD, USA

⁴ KTH Royal Institute of Technology, Stockholm, Sweden

⁵ Laboratory of Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, USA

⁶ Department of Earth and Space Sciences, University of California, Los Angeles, California, USA.

⁷ Southwest Research Institute, San Antonio, Texas, USA.

EGU_Online_2020

4 May 2020

Basic properties of lower hybrid waves (LHWs)

- Frequency: $f_{ci} < f < f_{ce}$
- Wavelength: $\rho_i > \lambda > \rho_e$
- \rightarrow electrons: approximated magnetized

ions: almost unmagnetized

- quasi-electrostatic, but δB are not zero (the ratio W_B/W_E is often >1 at magnetopause)
- k_⊥ >> k_{||}
- \rightarrow Linearly polarized and δB mainly in parallel directions
- More details can be found at Graham et al., [2019].

Lower hybrid waves (LHWs) at Earth's magnetopause

- LHWs are frequently observed at magnetospheric side of the magnetopause reconnection, which can be generated by
- a. Lower hybrid drift instability: a density/temperature gradient
- b. Modified two-stream instability: beam-like finite gyroradius ions
- LHWs are of particular importance
- a. cross-field particle diffusion \rightarrow built-up of LLBL
- b. anomalous resistivity/ viscosity

Asymmetric guide-field reconnection

• Asymmetry of the reconnection exhaust: $B_g \pm B_{Hall}$

Event overview

From the x-line to downstream (due to the large tangential motion)

MMS 4 \rightarrow MMS 1, 3 \rightarrow MMS 2

- Slow normal motion ($V_{mp,N} \sim 5 \text{ km/s}$)
- Significant different MMS observations
- Clear density gradient is found at the sheath separatrix (marked by the vertical dashed line)

Zoom-in at the magnetosheath separatrix

Properties of observed LHWs

	V _{ph} (km/s)	λ (km)	$k_{\perp} \rho_{e}$	$\Phi_{B}(V)$	$\Phi_{E}(V)$	CΦ	< D ₁ > (m ² s ⁻¹)
MMS4	50 × [0.62 -0.71 -0.33]	4.2	1.0	5.7	5.8	0.83	~ 10 ⁵
MMS1	65 × [0.72 -0.70 0.06]	3.1	1.6	7.8	8.4	0.87	-2.6×10^{7}
MMS3	94 × [0.67 -0.72 -0.18]	6.3	0.9	5.2	4.5	0.81	-1.8×10^{7}

- Due to the presence of the magnetic B_M, the propagation direction of these waves is not closed aligned in -M direction, but has a component in L direction. → For comparison, LHWs at the magnetospheric side propagate approximately in M direction (in the ion rest frame).
- $k_{\perp} \rho_e \sim 1 1.6$
- The sheath electron temperature is about 30 eV, leading to $e\Phi/k_BT_e \simeq 15\% 25\%$
- <D_⊥> here is 1~2 orders in magnitude smaller than it in the magnetospheric side. Still it will only take several seconds to diffusely transport electrons if assuming the boundary is ~10 km thick.

Properties of observed LHWs

	k (LMN)	V _{ph} (km/s)	Ф _в (V)	Φ _E (V)	C _Φ	k _⊥ ρ _e	V _{ph} (km/s)	f (Hz)	k_ρ _e	<d_>> (m²s⁻¹)</d_>
		et al. [20	Graha							
MMS4	[0.62 -0.71 -0.33]	50	5.7	5.8	0.83	1.0	43	8.6	1.2	~ 10 ⁵
MMS1	[0.72 -0.70 0.06]	65	7.8	8.4	0.87	1.6	53	20.4	2.1	-2.6×10^{7}
MMS3	[0.67 -0.72 -0.18]	94	5.2	4.5	0.81	0.9	60	17.3	1.4	-1.8×10^{7}

A new method is developed by Graham et al., 2019 to get the wave dispersion relation.

$$k_{\perp}(\omega) = \frac{1}{d_e} \sqrt{\frac{W_e(\omega)}{W_B(\omega)}},$$
 Graham et al., 2019

 $\rm N_e$ is estimated from SC potential, and $\rm Ve$ is from EDP E field

	k (LMN)	V _{ph} (km/s)	Φ _B (V)	Φ _E (V)	C _Φ	$k_{\perp} \rho_{e}$	V _{ph} (km/s)	f (Hz)	k _⊥ ρ _e	<d_>> (m²s⁻¹)</d_>
		Graha								
MMS4	[0.62 -0.71 -0.33]	50	5.7	5.8	0.83	1.0	43	8.6	1.2	~ 10 ⁵
MMS1	[0.72 -0.70 0.06]	65	7.8	8.4	0.87	1.6	53	20.4	2.1	-2.6×10^{7}
MMS3	[0.67 -0.72 -0.18]	94	5.2	4.5	0.81	0.9	60	17.3	1.4	-1.8×10^{7}

In general, the result from different methods are consistent, but the V_{ph} estimated from Daniel's method seems smaller (k_⊥ is larger).

Again, no clear LHWs at MMS 2

Instability analysis (a finite plasma beta, ion frame)

$$0 = 1 - \frac{\omega_{pi}^2}{k^2 v_i^2} Z'\left(\frac{\omega}{kv_i}\right) + \frac{\omega_{pe}^2}{\Omega_{ce}^2} \left(1 + \frac{\omega_{pe}^2}{c^2k^2}\right) + \frac{2\omega_{pe}^2}{k^2 v_e^2} \left(1 + \frac{\beta_i}{2}\right) \frac{kV_{de}}{\omega - kV_E},$$
$$\mathbf{V}_{e\perp} \approx \mathbf{V}_E + \mathbf{V}_{de} \qquad \text{Davidson et al., 1977}$$

	k (LMN)	V _{ph} (km/s)	Φ _B (V)	Φ _E (V)	C _Φ	k _⊥ ρ _e	V _{ph} (km/s)	f (Hz)	k _⊥ ρ _e	<d_>> (m²s⁻¹)</d_>
		t al. [20	Graha							
MMS4	[0.62 -0.71 -0.33]	50(58)	5.7	5.8	0.83	1.0	43(51)	8.6(9.8)	1.2	~ 10 ⁵
MMS1	[0.72 -0.70 0.06]	65(67)	7.8	8.4	0.87	1.6	53(55)	20.4(20.9)	2.1	-2.6×10^{7}
MMS3	[0.67 -0.72 -0.18]	94(87)	5.2	4.5	0.81	0.9	60(53)	17.3(15.7)	1.4	-1.8×10^{7}

The numbers outside/inside the parentheses are estimated in the spacecraft/ion frame.

- LHWs are observed at the magnetosheath separatrix in asymmetric guide-field reconnection;
- LHWs are generated by lower hybrid drift instability;
- Properties of these LHWs:
- Active in limited regions;
- Propagating toward the x-line, in the same direction the diamagnetic drift of the x-line;
- ightarrow eΦ/k_BT_e ~ 15% 25% → effectively transport particles from the sheath to the exhaust.

Thank you!

If you have any comments/suggestions, please contact bbtang@spaceweather.ac.cn