

Mapping Forest Degradation with Alos Palsar: Case Studies from Ghana & Mexico

Charlotte Wheeler¹, Edward Mitchard¹, Mathew Williams¹, Hugo Nolasco Rayes², Yakubu Mohammed³

¹ University of Edinburgh ² FIPRODEFO, Trust for the administration of the Forest Development Program of the State of Jalisco ³ RMSC, Resource management Support Centre, The Forestry Commission of Ghana

Overview

- Forest degradation Why monitor it & why is it so challenging?
- Methodological approach Combining ground data & radar data
- Case study 1 Mexico, Jalisco State
 - Degradation issues
 - Case study results
- Case study 2 Ghana, Brong Ahafo Region/Western Region
 - Degradation issues
 - Case study results
- Summary

What is forest degradation?

Deforestation – Total clearance of forest

Biomass Stock time 1

Biomass Stock time 2

Degradation – Reduction in aboveground biomass from an area that remains forest after disturbance

Biomass Stock time 1

Biomass Stock time 2

Biomass Stock time 3

- Gradual process
- Canopy cover remains
- Changes can be subtle
- E.g. Removal of large trees for timber (selective logging)

OR

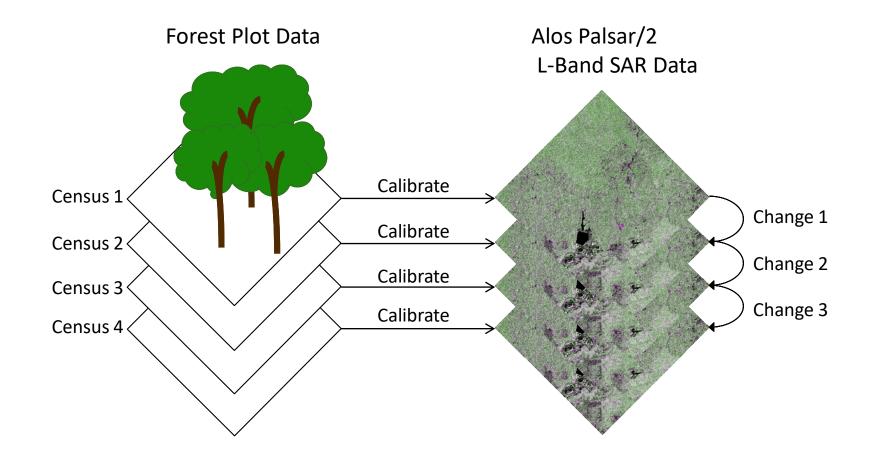
Sub-canopy – removal of understory trees and replaced with crops (shade grown coffee/cocoa)

Why monitor forest degradation?

- Covers huge area
 - Potentially 2-10 x greater area than tropical deforestation annually (de Andrade et al. 2017 *Car Bal manage*.)
- So emissions from degradation could be substantial
 - ~70% of tropical forest emissions from degradation (Baccini, 2017, Science)
 - Degradation emissions twice that of deforestation (Mitchard, 2018, Nature)
- Furthermore, degradation often precedes deforestation
- **BUT** estimated poorly constrained
- Need to quantify extent +
 - rate +
 - magnitude of emissions
- Not a purely academic effort
 - Countries must report degradation emissions to UNFCCC

Challenges & Opportunities

Challenges


- Degradation can occur below the forest canopy
- Often occurs in regions with persistent cloud cover
 - So traditional optical satellites (e.g. Landsat) not suitable as can't pass through cloud or forest canopy.
- Differentiating between intact forest canopy and degraded forest canopy challenging
- Degradation events are typically small (<1ha)
 - Optical satellites can detect changes in canopy cover, but big changes in canopy cover are related to heavy degradation

Opportunities

- Radar satellites can pass through forest canopy
 - Interacts with branches & stems gives information about forest structure
- Radar backscatter signal correlated with biomass
 - Can be used to create biomass maps
 - BUT Backscatter signal saturates at high biomass

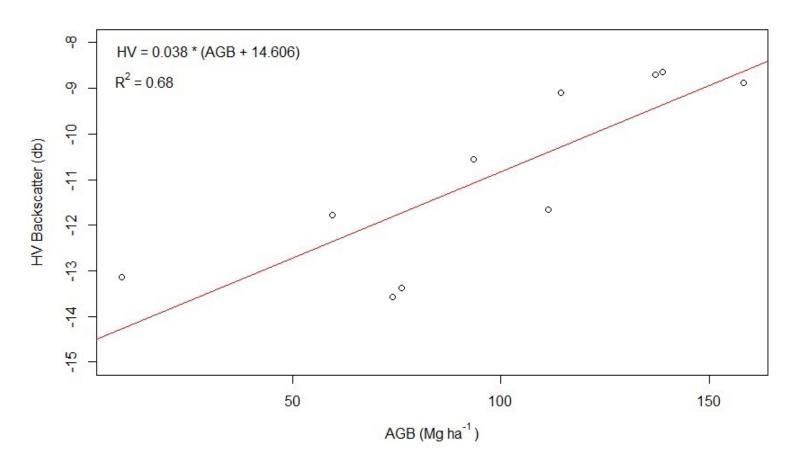
Methodological Approach

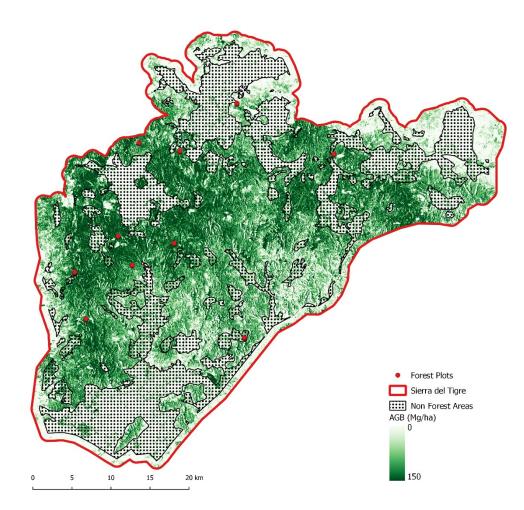
Case Study 1 – Mexico, Jalisco

- Sierra Del Tigre
- 0.5ha
- Census 1 = 2017 (n = 10)
- Census 2 = 2018 (n = 10)

Degradation in Jalisco

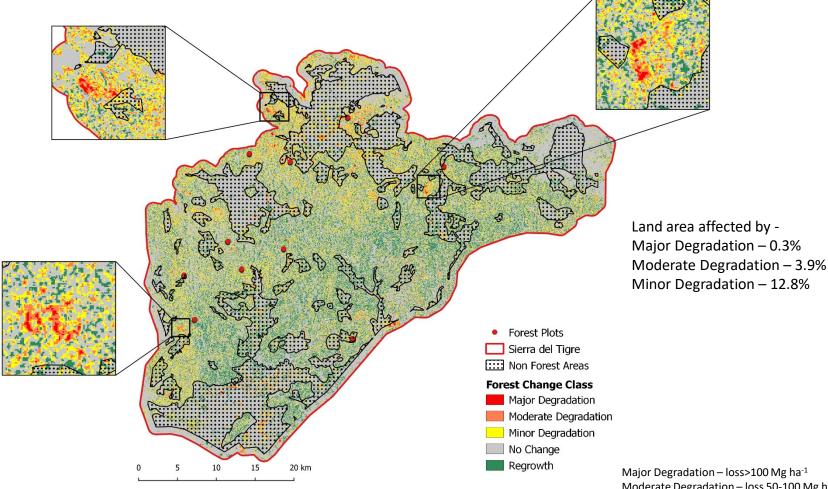
Forest affected by:


- Forest fires
- Pests bark beetles
- Agro-industry (E.g. Avocado)


Mexico - Results

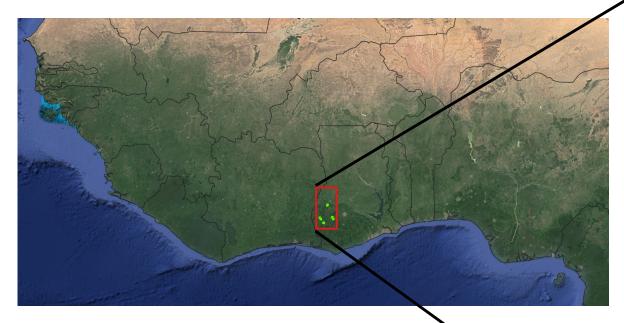
Census 1 (2017) – Linear model has best fit

Mexico – AGB in 2016 & 2017

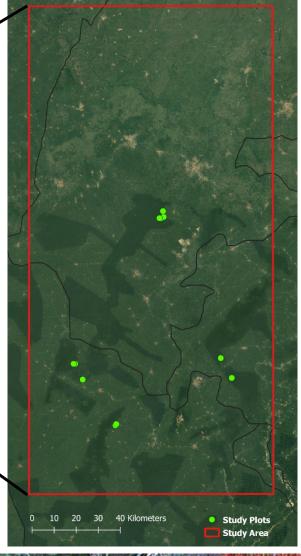


THE UNIVERSITY of EDINBURGH School of GeoSciences

<u>2016</u>


Mexico – AGB Change & Degradation

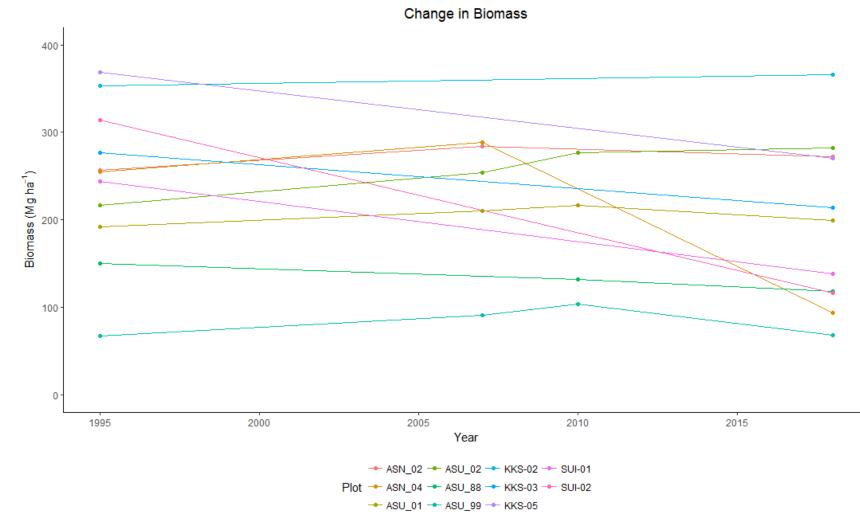
Major Degradation – loss >100 Mg ha⁻¹ Moderate Degradation – loss 50-100 Mg ha⁻¹ Minor Degradation – loss 10-50 Mg ha⁻¹



Case Study 2 - Ghana

- 11 plots in Sierra del Tigre
 - 1 ha
 - Census 1 = 1996 (n=11)
 - Census 2 = 2007 (n=4)
 - Census 3 = 2010 (n=5)
 - Census 4 = 2018 (n=11)

Degradation in Ghana


Forest affected by:

- Selective logging
- Agricultural encroachment (E.g. Casava, banana)
- Agro-industry (E.g. Cocoa)

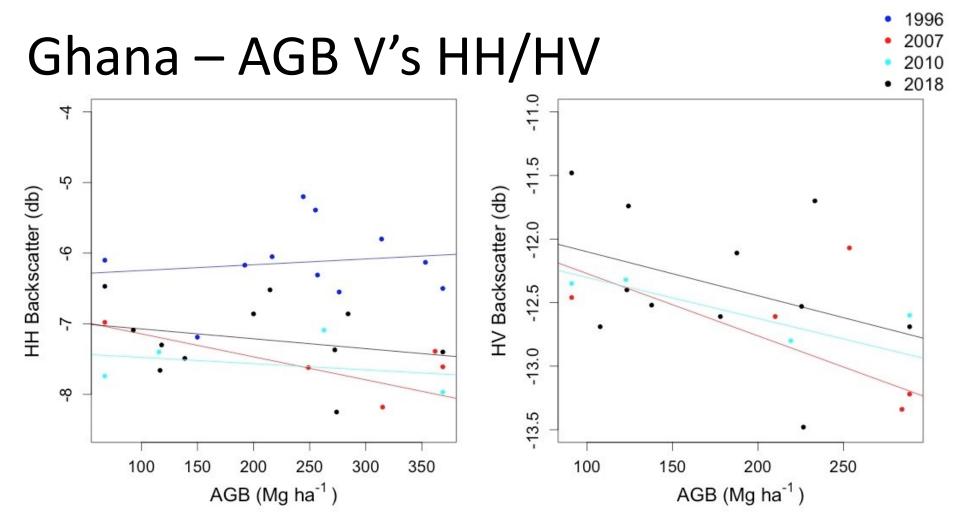
Ghana - Results

THE UNIVERSITY of EDINBURGH

STRACTOR CONTRACTOR STRACTOR

Ghana - AGB

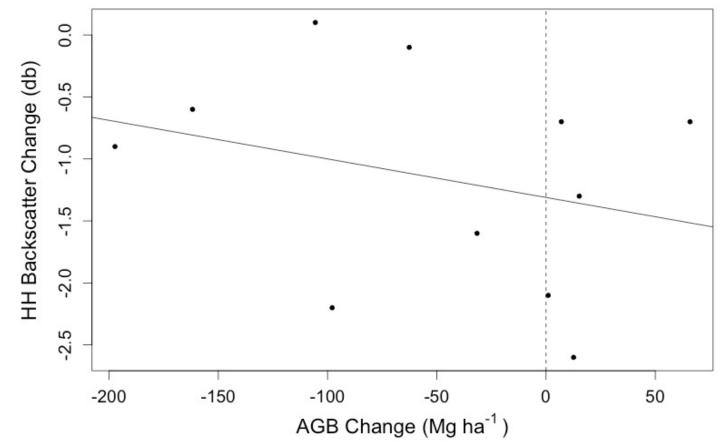
Over 20 years


In some plots there is substantial AGB loss (>100 Mg ha⁻¹)

Losses >60% of AGB in some cases

Mainly due to selective logging

Plot	AGB 1996 (Mg ha ⁻¹)	AGB 2018 (Mg ha ⁻¹)	AGB Change (96-18)	% Change (96 – 18)
ASU_99	67.4	68.3	1.0	1.4
ASU_88	149.9	118.3	-31.6	-21.1
ASU_01	192.2	199.2	7.0	3.7
ASU_02	216.5	282.4	65.9	30.4
SUI_01	244.3	138.7	-105.6	-43.2
ASN_04	255.2	93.4	-161.8	-63.8
ASN_02	257.0	272.3	15.2	5.9
KKS_03	276.3	213.7	-62.6	-22.6
SUI_02	314.1	116.9	-197.3	-62.8
KKS_02	353.2	365.8	12.6	3.6
KKS_05	368.7	270.7	-97.9	-26.6



No relationship between plot data & HH/HV backscatter Apparent downward trend in HV – Very low predictive power to convert HV to AGB Saturation of HH/HV backscatter signal in High AGB plots

Ghana – HH Change Signal

Also checked relationship between change in HH backscatter and change in AGB between 1996-2018 but not relationship

Summary

- We are able to detect forest degradation from losses in AGB in lower AGB forest
- Plots in degraded forest are invaluable we need ground data to pick these processes up and understand them better
- BUT In high AGB forest even large changes are not detected.

This is worrying

- Alos Palsar isn't detecting major degradation events in high AGB forest
- Other instruments might detects major degradation (related to changes in canopy cover)
 - BUT they don't map minor degradation or quantify the losses of AGB
 - We show Minor degradation covers much larger area than major degradation so we are potentially missing lots of emissions.

