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Outline

* Experiment & Motivations

* Pixel-wise regression procedure:
« Power-law fitting (grayscale, standard)
* Objectives

* Novel alternatives:
« Laurent series fitting (grayscale)

- Bead-correcting Beer-Lambert fitting
(monochromatic)

« Reduction-deviation metric fitting (color
image)

« Comparison & Summary
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Lab device & camera setup



Background: Salt Water Intrusion (SWI)
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Salt water intrusion in a coastal aquifer
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« SWI increases via anthropogenic

environmental changes:
* Pumping

« Evapotranspiration (e.g. higher
temperatures and crops)

* Urban runoff
 Sea level rise

* Physical complexity of systems

* Pressure-density-diffusion transport in
porous media

* Ordered heterogeneity: Stratification
and fractures

« Random heterogeneity
 Tidal/seasonal variability
* Pumping

* Important and complex system that

needs rigorous experimental study
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Experimental System

 Transparent aquifer (1 cm thick) is filled with ‘\ ¥ R W Cresm OO
glass beads of approximately 1 mm L Whitegacklights |17 ¢
diameter L o B

Transparent |

- Head-driven fresh water flows from left ~ Fresh Aquifer | Salt [

. Salt and red dye (Allura Red) pre-mixed with ~ SERACEES Water _
water in separate tank Inlet outlet¥

 Salt water recirculates by density-driven flow
from right reservoir

« White LED backlights illuminate the
transparent aquifer

« Cameras (grayscale and color) record the
state of the aquifer

- Transparent aquifer setup gives precise — Crayscalel  era

information on length of SW intrusion and =t
mixing zone of interface :

Smaller SWI sandbox apparatus with

CE:GUEESSrLad.yZOZO ‘@(D@@l original (left) and new (right) cameras




RGB calibration images

Pixel-wise Image Post-Processing
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Experimental Procedure

Prior to intrusion test: 8 calibration
images taken of aquifer filled with
fractional amounts of saltwater

Aquifer flushed to pure water, then SW
fills reservoir to intrude into aquifer

* Images taken every 5 minutes to steady
state interface

Experiments prior to this work were
carried out with grayscale camera only.

To take calibrations images, 1 intrusion
test requires an extended workday.

Post-processing Procedure
Crop image set automatically

At each pixel, calibrate the fitting
function via the dilution images.

Apply fitting sets to intrusion images
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Experiment Image (RGB camera)

Concentration
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Map of Image



Power Law Fitting

« Power Law Fitting (PLF) on grayscale
images:
C = 331]332 — X3
» Applied at each pixel to determine
coefficient values, x; for light curve

« Takes > 1 day to calibrate full RGB image!

» This specific power-law equation cannot be
linearized

* Non-linear optimization is computationally
expensive relative to linear optimization

« For average data: x, =—-2.86

» Less accurate simplification of fitting:
C=x1+ a7
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Regression using average light intensity field
T T T T T

o
Y
[oe]

Spline Fit
Power Curve
— — c1+c2n®
O  Average LI values

o
e
)]

©
N
~

o
-
\V]

o
-y

o
o
©

Co
Oce”ff .
0170/7 ~ /
0.06 - Ofeﬂ

S/t
\\ yC(//'l/e

0.04 -

0.02 -

0 Il Il Il Il Il Il Il 1
40 50 60 70 80 90 100 110 120 130 140

Light Intesity

Power Laws fitting example calibration data
GR power law (black) & simplified law (dashed)



Objectives

New larger-scale experimental apparatus
(10x larger aquifer volume)
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Goals for Optimization

Speed up, simplify, and improve accuracy
of experimental process at all stages: Setup
& calibration, intrusion runs, and data
processing

Simplicity: Focus on pixel-wise methods
using simple, fast fitting functions

Speed up: Improve post-processing times
by optimizing numerical methods

Efficiency: Reduce number of calibrations
to speed up time of experiment, and
decrease water and salt resource use



Laurent Series Fitting

« Expanding linear regression
equation into Laurent Series (LSF)

C'=ux —|—ZCQI_1 —|—$3I_2 —|—$4I_3
« Significant benefits to LSF

« Simpler computational method via
linear regression solution

» Radical speedup: 3 minutes (>10° x
faster than power law!)

* Improved accuracy near extremes

« Some concerns with LSF method

* Not a physically motivated method

* Subject to errors near low- .
concentration limit (non-monotonic)

* Does not simplify experimental
procedure (similar # of calibrations)
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Regression using average light intensity field
T T T T T

Spline Fit

Power Curve
Laurent-Polynomial Curve |-
O  Average Ll values
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Laurent series fitting example calibration data
Laurent series (red) visually gives best fit among methods
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Color Absorption Behavior Prediction
with Beer—Lambert Law

C=0%
Primary Gray-scale Image Sandbox

Experiment Spectra A s
e o P/ )
1 =l 0N 2/ C=100% -

1,000 ——Dye = —=— . = =
/’\/"\ —BW Camera Spectral prediction for BW-camera after
0.800 \/\" white LED light passes through red dye
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Backlights, Red dye, and BW-camera spectra
Sensitivity of camera is poorly correlated with dye absorption

s o:
Normalized Intensity

C-1 Curve for spectral prediction
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Bead-Correcting Beer—Lambert Fitting
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> Axial 10E+0q1 . Bead-correcting approximation
/ to bead-integrated BLL
9.0E+00 -
8.0E+00 - —
Light transmission through cross-section - 0E+00 |
Lowest-order light decay is 1/C going through 56-0E+00 —
axis, other terms are higher order with e=C like in £ 50E%00 |
the Beer—Lambert Law S J0Es00 S
Solid-solid contact points hypothesized to © 000 LN\ SD”;?L?:UFn(Z order)
dominate light transmission in high- NISANAN A
concentrations | w7 )+
- . - . 1.0E+00 X
Suggests adding inverse intensity to BLL %
1 1 0.0E+00 ‘ ‘ ‘ ‘ ‘ T * ‘
C = x1log (F> + T2 + fCBf ’ ” 1 1fight Int2ensity (?)'5 i > ‘
« Asymptotic expansion gives a Laurent series. —— True Int (V(1-1"2)) A.xial<rA2)f BLL _ BICEBLL X (iorr P;s
Ideally applied to filtered monochrome pictures S (AT (LR ClF T s el S e

theoretical monochromatic data with BLL & BCBLL
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Real Color Absorption-Emission
Behavior

RGB calibration images
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RGB Intensity vs. Concentration curve
Increasing Red intensity
Deviation between color
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Dye effect quantities with salt
concentration
Combination of reduction and deviation
(RDM) is nearly linear
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Concentration (-)
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Average Data Trend fitting
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Linear (1% order) R
RDM Fitting g4

Quadratic (2" order)
o RDM Fitting 5
7 C=x1M + xo M~ -

— — Endpoint-fit line
— - — - Regression line
n line: 0-50%
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on cubic polynomial
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Concentration regression on metric
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Concentration from RDMF2

Low-order functions of the Reduction-Deviation
metric reproduce accurate concentrations

Near-linear influence of dye on metric-based
light curve; requires less calibration

Calculation of RDM field over image and pixel-
wise fitting coefficients are fast

Fitting functions are stable and monotonic
Requires RGB camera

Significant improvements over grayscale
methods
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Performance of Methods
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10 = O ——RDMF2 0.07
D e(,\,a\N X -~ RDMF1e < Laurent Series :EIS'E
c M (‘3’0.08 |~ LSF QO0.06 BCBLL ~_ | BCBLF
T e P o ——PLF 5 [T —+—RDMF2
IS T T BCBLF LE 0,05 b N
3 _ © 0.06 | Endpoint Linear RDM - - - o | Power-law g —
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S e e ——x LSF < 0.047 Laurent Series _— -
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Image scale (-) Image scale (-) Number of Fitted Calibrations
Fitting coefficient computation Calibration error vs. downscaling RMSE vs. number of calibration
time vs. downscaling images (0.01 ds)
« Grayscale methods have very
* Power law fitting is three orders similar error values « For most, fewer fittings have only
of magnitude slower than the TH dratic RDM | h small impact on accuracy
other fitting methods e quadratic [ JTlLICh el " .
accurate than the other fittings * Atleast one more image than
* Linear RDM is extremely fast number of fitting function

* Linear RDM is nearly as good as coefficients is best
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Minimum | Accuracy Fitting Sensor
processing | Calibration Function Requirements
Stability
Power Law (Standard) >1 day 5 Acceptable Stable, N/A (grayscale
C = x1I% — 14 (nonlinear!) (5% error) Monotonic image)
Laurent Series 3 minutes 6 Acceptable Non-monotonic ~ N/A (grayscale
O =2y + ol + 23] + T2 (5% error) image)
Bead-Correcting BLL 2 minutes 3 Acceptable Non-monotonic ~ (Monochrome
C = log G) e e % (5% error) light filter?)
1st order Reduction— 0.01 2 Acceptable Linear, RGB camera
Deviation Metric second (6% error) monotonic
C = CElM
2nd order Reduction— 1 minute 4 Best Monotonic RGB camera
Deviation Metric (1.5% error)

C=xM+ ZL'QMZ
(EGuszm,2020  [EOS0
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Conclusions

* Linear regression methods are much faster than nonlinear.

« The Laurent Series Fitting has similar accuracy to the Power-Law Fitting, but is orders of
magnitude more rapid to postprocess.

- Beads may significantly effect the experimental light curve.

» The simpler, physics-based linear regression adapting the Beer—Lambert Law to this
experiment performs as well as the other fitting functions.

 Allura Red dye causes spectral effects in RGB camera via spectral-variable
absorbance and red colored fluorescence.
* RGB specific methods perform better than grayscale intensity methods (e.g. PLF & LSF).
» The second order Reduction-Deviation Metric method reduces the error by two-thirds.

 All novel methods improve post-processing times and can reduce the
calibration cost of the experiment.

* In particular, the first-order reduction-deviation metric fitting reduces the concentration
estimation to two calibrations, while maintaining comparable accuracy.
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