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Introduction ‘ ‘
Introduction

This presentation is a summary of the two recent development we recently published
in Water Resources Research (Abbaszadeh et al., 2019) and also Advances in Water
Resources (Abbaszadeh et al., 2018a). The applications of this method is presented for
both flood forecasting and drought monitoring while utilizing the remotely sensed
observations.

Here, we introduce a novel approach that couples a deterministic four-dimensional
variational (4DVAR) assimilation method with an evolutionary ensemble filtering that
together significantly improve the estimation of storages and fluxes, hence better
forecasting skill. The Evolutionary Particle Filter with MCMC (EPFM) (Abbaszadeh et
al., 2018a) uses the Genetic Algorithm (GA) to effectively sample the particles to
better represent the posterior distribution of model prognostic variables and
parameters. This is followed by coupling EPFM and 4DVAR which results in a
superior DA approach, the so-called Hybrid Ensemble and Variational Data
Assimilation framework for Environmental systems (HEAVEN) (Abbszadeh et al.,
2019). The method explicitly accounts for model structural error during the
assimilation process.


https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018WR023629
https://www.sciencedirect.com/science/article/pii/S0309170817303421
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HEAVEN (Abbaszadeh et al., 2019, WRR)

This figure illustrates the Hybrid Ensemble and Variational Data Assimilation framework for
Environmental systems (HEAVEN). . i
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HEAVEN

Observation error covariance matrix R, at each time step can be S e<:1ﬁed as follows, where A is the error
k
percentage in observations and Obsy, is observation at time k. B is prior error covariance matrix.

R, = [max{(A1x0bs;),1}]*> B = diag ([QXxO,b] ) Q, = I'xdiag ([nxaco’b] )

where () is the error percentage in initial state variables and x, ;, is the deterministic initial guess for state

variables. Similarly, the model error covariance is @, where T is the error percentage in model structure and I
is the model error covariance inflation (I' > 1) or detlation factor (I' < 1).

For real case study (model is imperfect), we use the Weak-constraint 4DVAR formula (1), while for synthetic
study (model is perfect), the strong-constraint formulation (2) should be used.

J(xg, orxg) = JP +]° + 1

1 T 1 o T
= 2 (xo - xO,b) B_l(xo - xO,b) + Ez(yk - hk(xk)) Rél(yk - hk(xk))
k=0
(1)

1
+ EZ(xk — M1k (Kr—1, 0,w)) " Q7 O — Mye— 150 (-1, 0, )

K
1 1
JGio) = J +J° = 5 (xo = %) B (x0 = %) + 5 ) (e = b)) R (e — e G)) ()
k=0
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HEAVEN
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HEAVEN

The prior and posterior
distributions at four daily time
steps (t =183, 213, 225 and 337

days).

These four days represent the
initial time of four different
assimilation cycles, which were
chosen according to different
streamflow regimes.

In each assimilation cycle 4DVAR
moves the prior (red point) to an
optimal location (green point) at
which the EFPM provides the best
estimates of posterior distributions
for both state variables and model
parameters.
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HEAVEN
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Drought Monitoring (Xu et al., 2020, RSE)

In this study, we use our Data Assimilation (DA) approach to assimilate Soil Moisture Active
Passive (SMAP) soil moisture data into Variable Infiltration Capacity land surface model to
provide more reliable topsoil layer moisture over the Continental United States.

Also, we used a multivariate probability distribution based on a Copula function to integrate the
posterior soil moisture, precipitation and evapotranspiration information to develop a new
integrated drought index, 1.e., the SPESMI (Standardized Precipitation, Evapotranspiration and
Soil Moisture Index).

In this study, we assimilate two remotely sensed data, namely SMOPS, and MODIS
evapotranspiration (MODIS16 ET), at 1-km spatial resolution, into the VIC land surface model.

To validate the usefulness of the developed integrated drought index, we compared the drought
events detected by this index with those reported by the United States Drought Monitor (USDM).

we noticed that our approach could identify some severe to extreme drought events that had been
underestimated by the USDM.



Applications ‘ ‘

Drought Monitoring

A comparison of the assimilated soil moisture and the in-situ soil moisture data at the Walnut
Gulch Watershed in the state of Arizona, USA.

Most of the DA obtained soil moisture is well within the 68% confidence interval, 1.e. the range of
one standard deviation, indicating the DA results are strongly consistent with in-situ data.
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Drought Monitoring

The Standardized Precipitation,

Evapotranspiration and Soil Moisture
Index (SPESMI), is developed based on
the precipitation, MODIS PET and the

posterior soil moisture.

According to the SPESMI, mild drought
spread out in the southern CONUS and

the Midwest in the early spring,
especially in Missouri and southern
Illinois.

During late summer, severe to extreme

drought prevailed in northwestern
CONUS, especially in Montana,

consistent with the results from USDA

topsoil moisture observations.
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Drought Monitoring

Soil moisture (SM) and evapotranspiration
(ET) are key variables of the terrestrial water
cycle with a strong relationship.

This study examines remotely sensed soil
moisture and evapotranspiration data
assimilation (DA) with the aim of improving
drought monitoring.

Although numerous efforts have gone into
assimilating satellite soil moisture
observations into land surface models to
improve their predictive skills, little attention
has been given to the combined use of soil
moisture and evapotranspiration to better
characterize hydrologic fluxes.

Applications ‘

(Gavahi et al., 2020, JHM)
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Applications ‘

Comparison between multivariate DA results and two SCAN and USCRN stations within the
ACEF region.

Two of the USCRN and one of the SCAN stations are located inside the ACF basin, although
only one of the USCRN stations provided data for the analysis period of the current study.
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Applications

Drought Monitoring

This shows a comparison between USDM
and the drought categories derived from
SM percentiles of multivariate DA for
three different weeks.

It 1s noteworthy to mention that the spatial
resolution of multivariate DA 1s 1 km
which provides us with a more detailed
depiction of the drought extension over
the ACF region.

The week starting on February 13 (Feb-13
to Feb-19) shows only DO and D1
categories on the USDM maps whereas
the same areas in these categories are
classified as D2 to D4 in multivariate DA.
The discrepancies arise mostly in summer.
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Flood Prediction: Hurricane Harvey

This Figure illustrates location of the study
area in the Southeast Texas along with
watershed boundary, WRF- Hydro geogrid
domain, lakes, stream networks, major
rivers, and USGS streamflow gauges.

In this study, we use an ensemble based
Data Assimilation (DA) approach to explore
the benefit of independently and jointly
assimilating remotely sensed SMAP (Soil
Moisture Active Passive) soil moisture (at
different spatial resolutions) and USGS
streamflow observations to improve the
accuracy and reliability of WRF-Hydro
model predictions while accounting for
uncertainties.
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Flood Prediction: Hurricane Harvey

In this study, we used all the four USGS stations operated within the watershed to
calibrate the WRF-Hydro model parameters. For the model calibration, the Noah-MP
time step was set to one hour, which is the standard of the operational NWM. WREF-
Hydro model calibration is performed by optimizing hourly streamflow using
Dynamically Dimension Search (DDS) algorithm
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Flood Prediction: Hurricane Harvey

This figure, used as an example for conceptualization, illustrates SMAP soil moisture
data at three different spatial resolutions across the state of Texas on 26 August 2017,
when the hurricane Harvey hit the southeast region of this state.

SMAP L3 SM_P SMAP L3 SM P E SMAP L3 SM_P_D
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Soil Moisture (m3/m?3)

Right panel: SMAP_ L3 SM P (SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 5) at 36 km
spatial resolution. Middle panel: SMAP L3 SM P _E (SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil
Moisture, Version 2) at 9 km spatial resolution. SMAP L3 SM P D (SMAP Radiometer Downscaled Product (Abbaszadeh

et al., 2019a)) at 1 km spatial resolution.
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Flood Prediction: Hurricane Harvey
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Flood Prediction: Hurricane Harvey

This figure illustrates the benefit of 2500 B 08071280 3500 [ 08070200
multivariate assimilation of satellite soil oo M 30001
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‘ Results ‘

Results

The proposed approach:

Characterizes model structural uncertainty by incorporating an explicit form of model error covariance
matrix (Q) in the 4DVAR cost function.

Propagates the prior error covariance matrix (B), which consists of a linear combination of static (Bs) and
dynamic (Bd) error covariance matrices, from one cycle to another cycle over the entire assimilation
period to fully account for a wide range of uncertainties in model predictions, and thus lead to more
accurate and reliable posterior distributions.

Drought Monitoring:

Compared to the commonly used data assimilation techniques, the proposed approach can improve the
soil moisture estimation in terms of the correlation, ubRMSE and reliability in most areas of CONUS.
The results indicated a strong temporal consistency of the drought areas detected by our approach and the
USDM over the entire period of study (April 2015 to June 2018).

Over ACF region, the results are consistent with the USDM maps during the winter and spring season
considering the drought extents, but the severity of drought estimated by DA is slightly higher compared
to USDM archives. During summer, however, the USDM maps show a complete drought-free condition
whereas our findings show some areas with moderate to severe drought conditions.

Flood Prediction:

Investigated the model performance during the hurricane Harvey and post-Harvey periods and realized
that although DA, whether univariate or multivariate, and OL model runs have shown similar results in
characterizing the onset of flooding, the DA outperforms in prediction of onset and demise of flooding
(streamflow recession period).
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ARTICLE INFO ABSTRACT

Keywords: Particle Filters (PFs) have received increasing attention by researchers from different disciplines including the

Particle Filters

Markov Chain Monte Carlo systems. The i

hydro-geosciences, as an effective tool to improve model predictions in nonlinear and non-Gaussian dynamical
ication of dual state and i

Genetic algorithm
Hydrologic prediction

using the PFs in hydrology has evolved since

2005 from the PF-SIR (sampling importance resampling) to PE-MCMC (Markov Chain Monte Carlo), and now to
the most effective and robust framework through evolutionary PF approach based on Genetic Algorithm (GA)

and MCMC, the so-called EPFM. In this framework, the prior distribution undergoes an evolutionary process
based on the designed mutation and crossover operators of GA. The merit of this approach is that the particles
move to an appropriate position by using the GA optimization and then the number of effective particles is
increased by means of MCMC, whereby the particle degeneracy is avoided and the particle diversity is improved.
In this study, the usefulness and effectiveness of the proposed EPFM is investigated by applying the technique on
a conceptual and highly nonlinear hydrologic model over four river basins located in different climate and
geographical regions of the United States. Both synthetic and real case studies demonstrate that the EPFM
improves both the state and parameter estimation more effectively and reliably as compared with the PF-MCMC.

1. Introduction

Accurate and reliable estimation of prognostic variables, such as
streamflow and soil moisture, has always been one of the main chal-
lenges for hydrologists. Although hydrologic modeling can provide es-
timates of these quantities, the simulation results are potentially biased
or erroneous given the following uncertainties:1) forcing data un-
certainty due to the limitation of measurements and spatio-temporal
representativeness of the data; 2) parameter uncertainty due to con-
ceptualization of the model and non-uniqueness of parameters; 3)
model structural uncertainty due to the imperfect representation of a
real system; 4) initial and boundary condition uncertainty. Therefore,
hydrologic predictions are better generated within a probabilistic fra-
mework, providing a mechanism to estimate the uncertainties involved
in all layers of hydrologic predictions (Moradkhani et al., 2012). Most
often, this is performed through Bayesian inference. Bayesian methods
have been well acknowledged and used in numerous efforts to estimate
the uncertainties in hydrologic model predictions (e.g., Kuczera and
Parent, 1998; Marshal et al., 2004; Moradkhani et al., 2005; DeChant
and Moradkhani, 2014; Vﬂn et al, 2015; Pa!h!ra]a et al., 2016a;
Pathiraja et al., 2016b).

* Corresponding author.
E-mail address: hamidm@pdx.edu (H. Moradkhani).

https://doi.org/10.1016/j.advwatres.2017.11.011

Data Assimilation (DA) has been recognized as one of the effective
methods to improve hydrologic predlcuon Currently, the most widely
used DA techni in the hydrol ity is the bl
Kalman filter (EnKF) (Reichle et al., 2002; Crow and Wood, 2003; De
Lannoy et al., 2007). Although the successful application of the EnKF
and its variants has been reported in hydrologic literature, this tech-
nique has some inherent features resulting in sub-optimal performance.
These include the Gaussian assumption of errors, linear updating rule
within the EnKF and violation of water balance that limit its superiority
(Moradkhani et al., 2005; Matgen et al., 2010; Noh et al., 2011; Plaza
et al., 2012; DeChant and Moradkhani, 2012; Yan and Moradkhani,
2016). Given these concerns, data assimilation by means of Particle
Filter (PF) as a viable alternative to the EnKF has garnered increasing
attention in literature (e.g., Noh et al., 2011; Moradkhani et al., 2012;
Montzka et al., 2013; Dong et al., 2015; Yan et al., 2017). The PF ap-
proach can relax the Gaussian assumption of error distributions by
potentially characterizing multimodal or skewed distribution in state
variables and parameters. Therefore, it can provide a thorough re-
presentation of the posterior distribution for a given nonlinear and non-
Gaussian system. DeChant and Moradkhani (2012) presented a detailed
performance assessment between the EnKF and PF, and found more
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Abstract This article presents a novel approach to couple a deterministic four-dimensional variational
(4DVAR) assimilation method with the particle filter (PF) ensemble data assimilation system, to produce
a robust approach for dual-state-parameter estimation. In our proposed method, the Hybrid Ensemble and
Variational Data Assimilation framework for Environmental systems (HEAVEN), we characterize the
model structural uncertainty in addition to model parameter and input uncertainties. The sequential PF is
formulated within the 4DVAR system to design a computationally efficient feedback mechanism
throughout the assimilation period. In this framework, the 4DVAR optimization produces the maximum a
posteriori estimate of state variables at the beginning of the assimilation window without the need to develop
the adjoint of the forecast model. The 4DVAR solution is then perturbed by a newly defined prior error
covariance matrix to generate an initial condition ensemble for the PF system to provide more accurate and
reliable posterior distributions within the same assimilation window. The prior error covariance matrix is
updated from one cycle to another over the main assimilation period to account for model structural
uncertainty resulting in an improved estimation of posterior distribution. The premise of the presented
approach is that it (1) accounts for all sources of uncertainties involved in hydrologic predictions, (2) uses a
small ensemble size, and (3) precludes the particle degeneracy and sample impoverishment. The proposed
method is applied on a nonlinear hydrologic model and the effectiveness, robustness, and reliability of the
method is demonstrated for several river basins across the United States.

1. Introduction

Soil moisture and streamflow are among those key environmental variables that greatly affect flood
forecasting, drought monitoring, and agricultural production that all collectively control the land and
atmospheric system. Although, theoretically, these quantities can be estimated through hydrologic
modeling, in practice they are often biased or erroneous due to the presence of uncertainties in all layers
of hydrologic predictions. Data assimilation (DA) has been well received in the hydrologic community as
one of the most effective methods in characterizing the aforementioned uncertainties while estimating
parameters, prognostic, and diagnostic variables (Abbaszadeh et al., 2018; Clark et al., 2008; Moradkhani,
Sorooshian, et al., 2005; Moradkhani et al., 2018; Pathiraja et al., 2016; Vrugt et al., 2006).

Generally, DA is defined as the application of Bayes' theorem to probabilistically condition the states of a
dynamical model on observations (Moradkhani et al., 2018). A plethora of techniques is available to
assimilate observations into a model for better initialization of the system and quantification of model
parameter uncertainties. They all have some overlapping features making it difficult to define a clear-cut

n. ian data seeks probabilistic estimates of state variables of interest in order
to characterize their uncertainties. These probability distributions are sequentially adjusted according to
lhe Bayes ‘heorem to better match the observations. In the hydrologic community, the best known and

pproach is the Kalman filter (EnKF; Crow & Wood, 2003; De Lannoy
et al 2007; Moradkhani, Hsu, et al., 2005; Reichle et al., 2002). Despite the widespread use of the EnKF
and its different variants in hydrologic applications, it is subject to some inherent limitations that

result in suboptimal performance of this technique. These include (1) the linear updating rule, (2) Gaussian
assumption of errors in observations, and (3) violation of water balance (e.g., DeChant & Moradkhani, 2012;
Matgen et al., 2010; Noh et al., 2011; Plaza et al., 2012). PF as an effective alternative to EnKF has emerged
for applications in nonlinear and non-Gaussian systems (Abbaszadeh et al., 2018; DeChant & Moradkhani,
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