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What are PEGS signals?
How can we measure and model them?
Are they useful for early warning?

ttttttttttttttt ﬁ HELMHOLTZ



What are PEGS signals?

Fault rupture

(earthquake)
Elastic waves — Mass redistribution
u op = =V - (pu)

Elastogravitational
coupling

I

Secondary sources

Gravity change

5g = Vi : V2 = —4nGop

Propagates with speed of light!
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AS =Aa-Ag

What signals can arrive at receiver before t =T,?
1. Gravity perturbation Ag due to mass redistribution within Volume S.

2. Ground motion Aa generated by secondary sources in Volume R.
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How are they measured?

Montagner et al.(2016) detected the PPEG signals of the 2011 Tohoku
earthquake from records of a superconducting gravimeter (SG).

Valléee et al. (2017) reported their more reliable detection of the same
signals from low-noise records of 11 broadband seismometers (BB).

Kimura et al. (2019) tried to verify the previous detections using array
stacking of SG (failed), BB (successful) and tiltmeters (failed).

Vallee and Juhel (2019) presented new detections for 5 other large
earthquakes (Mw > 8.5) with different focal mechanisms.

Future: Use of GW detector measuring gravity gradient (expected
resolution 1013/s2) based on the general relativity theory are being
developed in Japan (Juhel et al. 2018).
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Gravity gets into the earthquake game

Earthguakes generate large movements of mass, which slightly change the gravitational field.
Unlike the elastic waves that propagate from the earthquake, the gravity perturbations travel at
the speed of light. Vallée et al. have finally observed these gravity perturbations in
seismometer records from the great Tohoku earthquake in Japan in 2011. The signal would
have allowed an accurate magnitude estimation in minutes, rather than hours, for this
catastrophic earthquake.

Science, this issue p. 1164

Abstract

After an earthquake, the earliest deformation signals are not expected to be carried by the
fastest (P) elastic waves but by the speed-of-light changes of the gravitational field. However,
these perturbations are weak and, so far, their detection has not been accurate enough to fully
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How are they modelled?

Harms et al. (2015) calculated the transient PPEG gravity change
based on a full-space model (only the gravity change).

Harms et al. (2016) extended the full-space model to a half-space
model (still only the gravity change).

Heaton (2017) pointed out that all geophysical instruments as a spring-
mass system response not only to the gravity change, but also to the
Inertial acceleration induced by it.

Vallée et al. (2017) simulated the two effects successfully, but in a very
primitive and time-consuming way:

Synthetic seismograms with reflectivity code — Discrete spatial
density variations in Volume S — Transient gravity perturbation at
station (4g) and at discrete elements in Volume R as secondary
single-force sources — Synthetic seismograms for all secondary
sources at station (4a) = Million of synthetics are needed
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A new approach
for simulating PPEG signals with the code

QSSP

by

Wang et al. (2017). Complete synthetic seismograms based on a
spherical self-gravitating Earth model with an atmosphere-
ocean-mantle-core structure. Geophysical Journal International.
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Theory:

S

Equations of motion
(momentum equilibrium, Poisson’s equation)

( 9%u
Paz =V o+pV()—guy) +pg(V-we, +f

T2y = 47GV - (pu)

Observables Source

(displacement, incremental gravity potential) (single forces, dislocations)

(sp

u=u(rb6,o,t)
Y =y(,0,0,t)

Earth model p=p), g=g),
herical, self-gravitating, elastic) A=A, u=u().

f=f(,0,9,t)
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QSSP output seismograms
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QSSP output seismograms

Aa=U




2011 Mw 9.0 Tohoku Earthquake - Station Kamioka (36.43°N, 137.31°E)
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2011 Mw 9.0 Tohoku Earthquake - Station Kamioka (36.43°N, 137.31°E)
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Our new ldea:

( 0%u
Paz =V o+pV()—guy) +pg(V-we, + f - U

T2y = 47GV - (pu)

( 9%u
Paz =V o+tpV(—gu)+pg(V-we, +f — ua

V%Y = a-4nGV - (pu)

u, includes the same elastic waves and the same static gravity effects
as u, but the coupling effect by factor o smaller/larger than wu.
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2011 Mw 9.0 Tohoku Earthquake - Station Kamioka (36.43°N, 137.31°E)
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Application to the 2011 Tohoku earthquake

Source model: Kinematic finite-fault model
provided by Wei et al. (2012)

Earth model: AK135 modified
with the local crust structure
QSSP synthetics
Cutoff frequency: 250 mHz
Cutoff harmonic degree: 2500
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Synthetic PEGS time series at selected stations
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Synthetics vs. data

Vallee et al. (2017) ‘
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Spatial distribution of peak PEGS signals
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On the potential use of PEGS

1. Most PEGS signals increase/decrease monotonically before the P
wave arrival. For a Mw ~ 9.0 earthquake, their maximum is in the order
of a few tenths of uGal, which is very small, but significantly over the
noise level at several quiet stations.

2. It can be best detected at epicentral distances between 500-3000 km,
but difficult without information of the P wave onset, implying a major
limitation for earthquake early warning.

3. Far-field peak PEGS signals are proportional to the total seismic
moment, providing strong constraints on the earthquake magnitude
and therefore useful for tsunami early warning under certain ideal
conditions.

4. The radiation pattern depends not only on the fastest P wave, but also
on many other seismic wave phases (pP, sP, ...), which can provide
complementary constrains on the source mechanism.
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How does the peak As signal depend on
the moment magnitude Mw and rupture duration T?

Two point source tests

Dip-slip
strike/dip/rake = 0°/20°/90°, receiver azimuth 90°
Strike-slip
strike/dip/rake = 45°/90°/90°, receiver azimuth 90°

Mw-T scaling law
T = T,10MW/?
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Dip-slip source Strike-slip source
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The first magnitude/duration inversion

Cost function: Approach 1:

Noqoetf Assume Mw-T scaling law
R = E?L [dl(t) — Si(t)]zdt T = ToloMW/Z

i=1 !

2D grid search Mw and T,
d;(t): data J o
s;(t): model Approach 2:
of: standard pre-seismic noise FIX
variance T = 140 s (CMT)
Unknowns: 1D grid search for Mw
Moment magnitude: Mw Confidence interval
Rupture duration: T through Bootstrap tests
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The 2011 Tohoku earthquake (11 best BB stations)
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Confidence level
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Seismic waveform inversion (Wie et al. 2012): Mw = 9.06
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Geodetic inversion
(Wang et al. 2013):

Mw = 8.90

GPS (Land + OB)
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Conclusions

v" A brand new approach, which is considerably simpler, faster
and more accurate than previously used for simulating PEGS
signals.

v' Arobust estimate of major source parameters of the 2011
Tohoku earthquake using the PEGS data recorded at 11 low-
noise broadband stations.

Outlook
» Further theoretical investigations (it is just the beginning).

» Development of new measurement systems (e.g., gravity
strainmeters).
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Thank you!
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