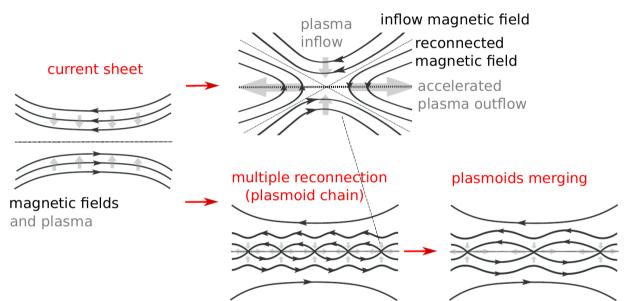
In situ evidence of firehose instability in multiple magnetic reconnection

Alexandra Alexandrova¹, Alessandro Retinò¹, Andrey Divin², Lorenzo Matteini³, Olivier Le Contel¹, Hugo Breuillard¹, Filomena Catapano⁴, Giulia Cozzani⁵, and Jan Deca^{6,7}

¹Laboratory of Plasma Physics, Ecole Polytechnique, Paris, France
 ²Saint Petersburg State University, Saint Petersburg, Russia
 ³Department of Physics, Imperial College London, London, UK
 ⁴Department of Earth Observation, European Space Agency, ESRIN, Frascati, Italy
 ⁵Swedish Institute of Space Physics, Uppsala, Sweden
 ⁶Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, USA
 ⁷Institute for Modeling Plasma, Atmospheres and Cosmic Dust, NASA/SSERVI, USA

EGU2020-18188


alexandra.alexandrova@lpp.polytechnique.fr sasha.alexandrova@gmail.com

Motivation

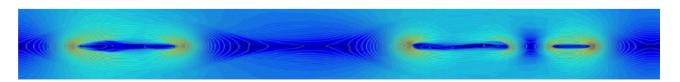
Current sheets may disrupt into single X-line or multiple reconnection sites

Multiple reconnection → plasmoids form between the adjacent X-lines [e.g. Bhattacharjee+2009, Markidis+2012, Uzdensky & Loureiro 2016]

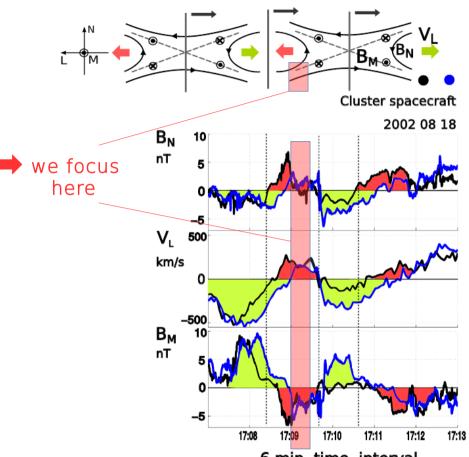
single X-point reconnection

- ? The effect of plasmoid dynamics on the large-scale energy redistribution during multiple reconnection is not yet fully understood
 - From simulations: plasmoid contraction leads to the acceleration of trapped ions, ion parallel acceleration is limited by the firehose instability [(Drake+2010 (2D PIC), Burgess+2016 (3D hybrid)]
 - → Goal:
- Study from direct observations the dynamics of the plasmoid formed between active X-lines and understand possible role of the ion firehose instability

Methodology

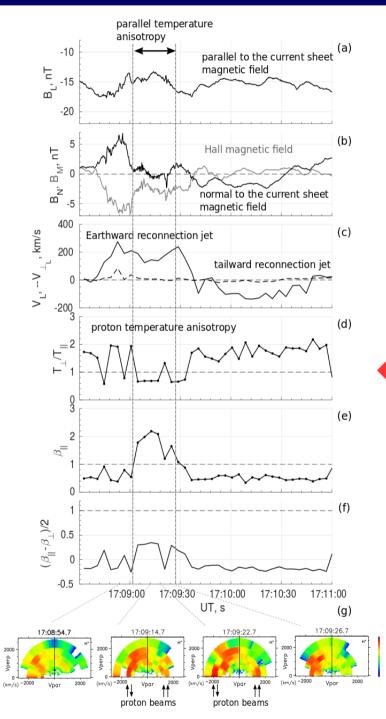

1. Cluster spacecraft in the Earth's magnetotail

- In situ observations of multiple reconnection
 - plasmoid & neighboring X-lines
- were provided in the Earth's magnetotail [Hwang+2013; Alexandrova+2015]
- a case study: complex temporal evolution of a plasmoid between two X-lines (Cluster, 2002 August 18) [Alexandrova+2016]: ion-scale time changes in magnetic field topology between the X-lines


We study 2002 August 18 event and analyze

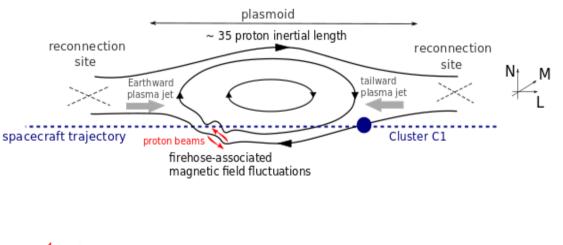
- ion distributions and temperature anisotropy
- electromagnetic fluctuations
- plasma stability

2. PIC simulations


- reconstruction of observations by 2.5D implicit particle-in-cell (A. Divin)
- allow to follow the space-time dynamics of the plasmoid

6 min time interval

Plasmoid between two reconnection sites



Cluster observations in the Earth's magnetotail

2002 August 18, 17:07:00-17:13:00 UT 17.7 RE tailward and 5 RE dawnward in GSM Data are represented in the current sheet conventional coordinates LMN (L is parallel to the current sheet and perpendicular to the reconnection line, M is parallel to the reconnection line, N is perpendicular to the current sheet.

Calculated by MVA [Sonnerup and Cahill, 1967] at 16:40 - 17:00 UT current sheet crossing prior to reconnection In GSM: L = (0.99, 0.03, 0.09)M = (0.00, 0.95, 0.31)N = (0.10, 0.31, 0.95)

🖬 Temperature anisotropy

Counter-streaming ion beams

Waves associated with temperature anisotropy

We analyze fluctuations observed at the time

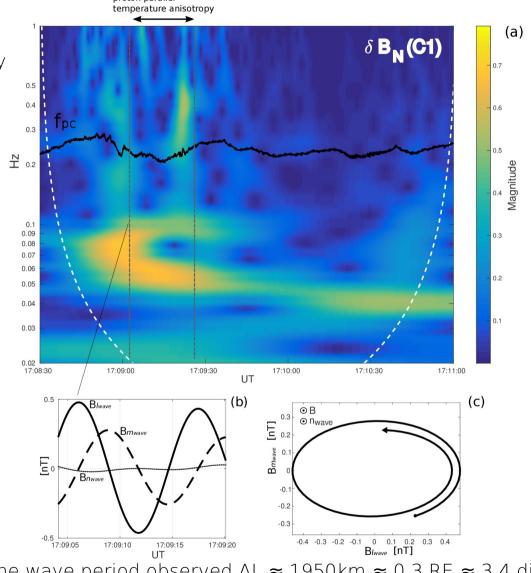
associated with the parallel temperature anisotropy δt = 17:09:04-17:09:20 f = 0.08 − 0.11 Hz ↓ Minimum variance analysis: [Sonnerup and Cahill, 1967; Thorne, 1973, Smith

and Tsurutani, 1976]

wave orientation in LMN is

I = (0.02, 0.64, 0.77)

m = (0.74, -0.53, 0.42)

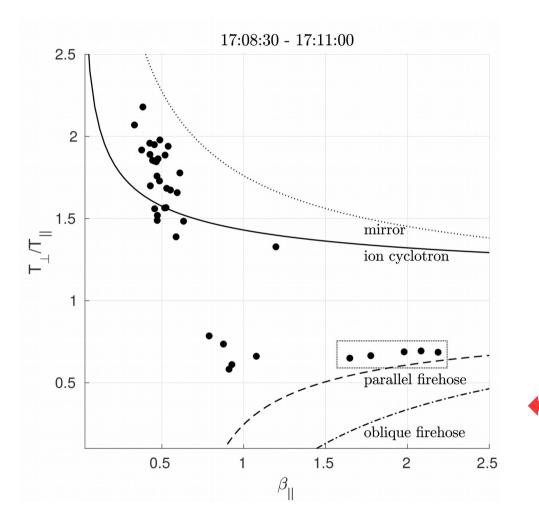

N = (0.68, 0.56, 0.49)

Normal is well defined: $\lambda \mod /\lambda \min = 188$

] wave is parallel to the background field \rightarrow right-hand rotation, propagation angle ~ 23°, ellipticity is = 0.57

```
Possible Doppler shift
plasmoid is moving tailward \approx -130 km/s
[Alexandrova et al. 2016]
ion bulk speed tailward \approx 160 km/s
Alfvén speed is \approx 800 km/s
```

→ the Doppler shift is roughly \approx 0.09 Hz, Real wave frequency is f \approx 0.2 Hz \approx fpc



one wave period observed $\Delta L \approx 1950$ km ≈ 0.3 RE ≈ 3.4 di the amplitude is $\delta |B|/|Bbg| \approx 0.03$

Observed wave characteristics and frequency ranges are consistent with the low branch whistler waves, which are related to the linear firehose instability [Gary+1998]

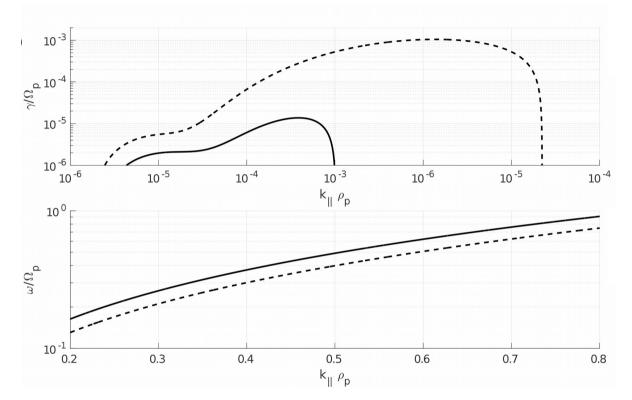
Analysis of plasma stability I

Qualitative estimates for the plasma stability

comparison between T_ /T_ II and β_{II}

measured in between the two X-lines

with the predictions of Vlasov linear theory for the marginal stability thresholds of typical plasma Instabilities calculated


for the maximum growth rate $\gamma \approx 10^{-3}$, according to [Hellinger+2006]

Points correspondent to the parallel temperature anisotropy and firehose-related waves

Analysis of plasma stability II

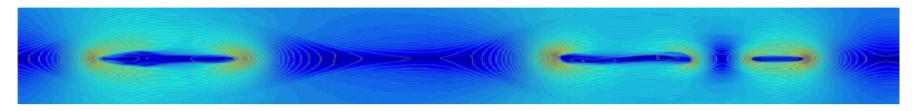
To investigate the growth rate of the possible firehose instability, we solve the Vlasov-Maxwell equations by using WHAMP solver

Observed parameters (solid line)

Temperature might be underestimated →

Anisotropy and Ti increased by 10% and 30%, respectively (dashed line)

WHAMP solver [Rönnmark, 1982], (realization of irfu-matlab IRF, Sweden)


Positive (but small) growth rate corresponding to the right-hand polarized waves f = 0.07 - 0.08Hz propagating parallel to magnetic field

 \rightarrow consistent with the firehose instability and similar to the observed waves

Reconstruction of observations with PIC

iPIC3D implicit PIC code [Markidis+2010] (A. Divin)

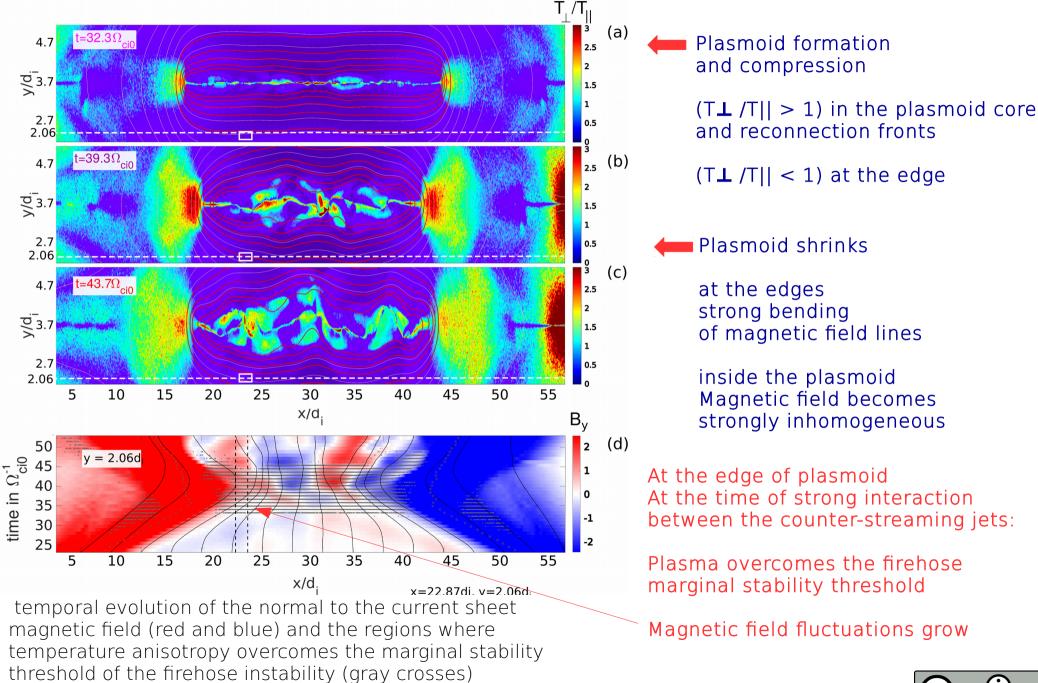
x axis is parallel to reconnecting field (~ L), y axis is normal to the current sheet (~ N)

2D rectangular domain with dimensions (Lx , Ly), model is translationally invariant in z

Initially two conventional Harris current layer

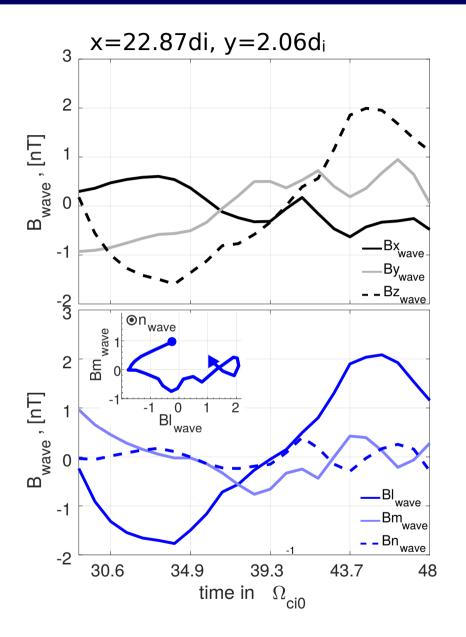
box dimensions (Lx , Ly) = (60di , 15di) number of grid points in each dimension (Nx , Ny) = (2304, 576)

 $m_{i}/m_{e} = 256$, $c/V_{A} = 276$


Magnetotail-like normalization $n_b = 0.1n_0$ Ti /Te = 5 length unit (di \approx 509 km) computed from plasmoid edge density 0.2 cm⁻³ Alfvén speed of 780 km/s the ion cyclotron frequency $\Omega_{ci0} \sim 1.5$ s⁻¹

localized X-point perturbation ignites reconnection at (0, Ly /4)

To mimic the dynamical stage of the plasmoid evolution, we impose periodic boundary conditions and allow plasma jets to run head-to-head producing the domain-large plasmoid



Reconstruction of observations with PIC

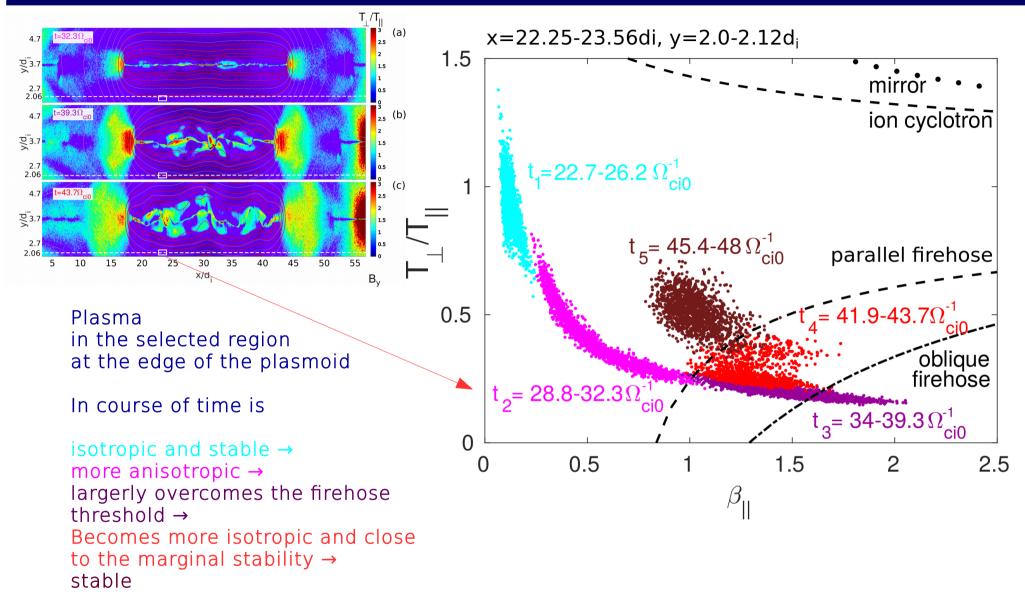
for a cut in y = 2.06di

Wave analysis in PIC

In the middle of the selected region (a white rectangle marked at the plasmoid edge on previous slide)

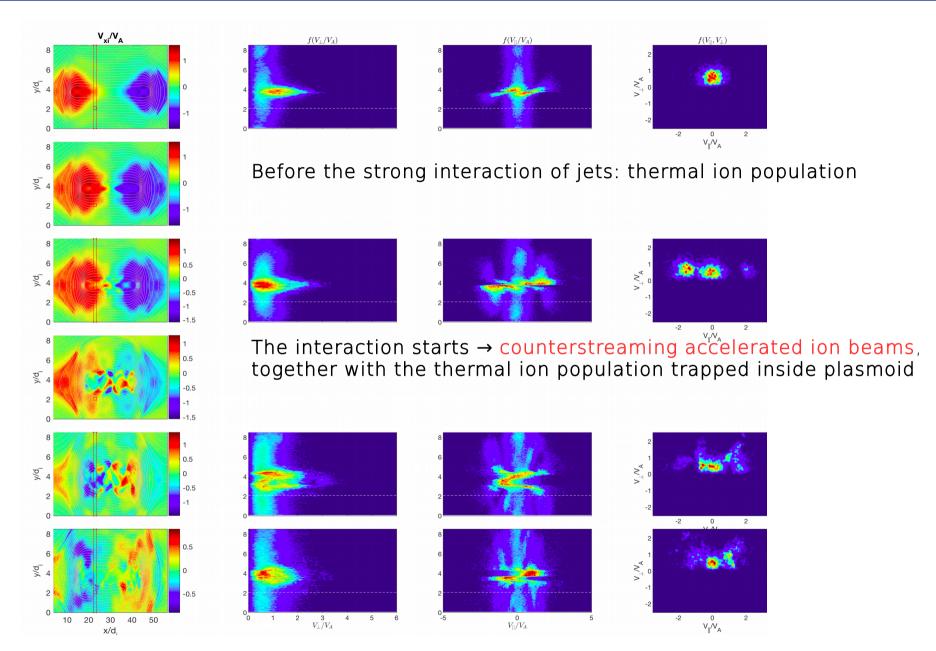
the magnetic field temporal changes represent one wave period

the MVA analysis gives the orientation of wave normal Nwave = (0.92, 0.11, 0.3), Lwave = (-0.25, 0.9, 0.34), Mwave = (0.28, 0.41, -0.87), in PIC (x, y, z) coordinates.


rotation of magnetic field in the plane perpendicular to the normal direction, Indicate right-hand elliptical polarization.

Fluctuations show characteristics typical for the firehose instability, with the magnitude of about $\delta|B|/B \approx 0.15$

the amplitude of the magnetic field fluctuations changes in time revealing the nonlinear evolution


Analysis of plasma stability in PIC

Temporal evolution of plasma stability at the edge of the plasmoid Is consistent with the development of the firehose instability

PIC ion distribution at the edge of the plasmoid

As a result of jets interaction: particle beams are scattered more to perpendicular direction, indicating the interaction with the firehose waves

Conclusions

According to the in situ observations of multiple reconneciton in the Earth's magnetotail and their reconstruction by PIC simulations:

Ion firehose instability develops at the periphery of the plasmoid between the reconnection X-lines leading to deceleration of ions accelerated by reconnection

may reduce the efficiency of reconnection

more details in [arXiv:2004.08280]

