Model 00 Key result 000 Conclusions O

$V_{\rm P}/V_{\rm S}$ ratio and dehydration reactions in subduction zones

Nicolas BRANTUT, Emmanuel C. DAVID

Department of Earth Sciences, University College London, UK.

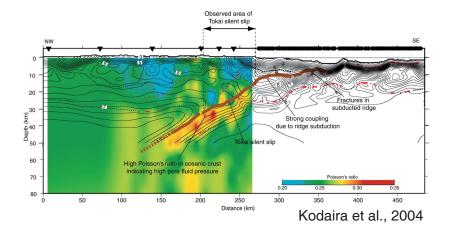
European Geosciences Union Annual Meeting, 06 May 2020

Model 00 Key result 000 Conclusions O

Funding

European Research Council

Established by the European Commission

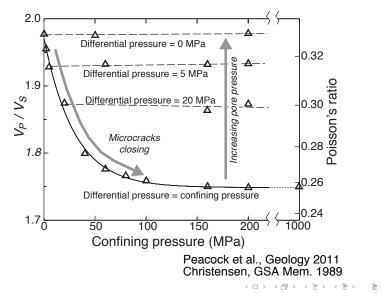


Natural Environment Research Council

◆□ > ◆母 > ◆臣 > ◆臣 > ○ ● ●

Introduction	Model	Key result	Conclusions
0000	00	000	0

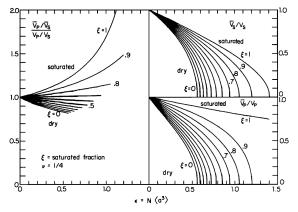
Common interpretation of $V_{\rm P}/V_{\rm S}$: fluids


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Conclusions O

Sac

Where does this interpretation come from?


Many rock physics measurements:

Model 00 Key result 000 Conclusions O

Theoretical justification

All models for **cracked** rocks show that $V_{\rm P}/V_{\rm S}$ should increase with increasing fluid-saturated crack density, as long as the compressibility of the fluid is not too small compared to crack aspect ratios. [O'Connell and Budiansky, 1974, and many many others]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

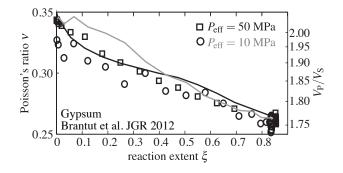
Introduction $000 \bullet 0$

Model 00 Key result 000 Conclusions O

Is $V_{\rm P}/V_{\rm S}$ always increasing?

Basic logic

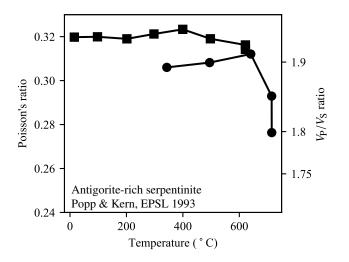
High fluid pressure (relative to confining pressure)


- \rightarrow cracks remain open
- $\rightarrow V_{\rm P}/V_{\rm S}$ increases.

Potential caveats

- dependence on fluid compressibility,
- dependence on crack aspect ratio,
- dependence on initial $V_{\rm P}/V_{\rm S}$ of the solid material!
- $\bullet\,\ldots\,$ not mentioning anisotropy issues (Wang et al. GRL 2012)

Introduction	Model	Key result	Conclusions
00000	00	000	0


 $V_{\rm P}/V_{\rm S}$ seesm to decrease during dehydration reactions

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 回 ト ◆ 回 ト

Introduction	Model	Key result	Conclusions
00000	00	000	0

 $V_{\rm P}/V_{\rm S}$ seesm to decrease during dehydration reactions

<ロト < 団 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

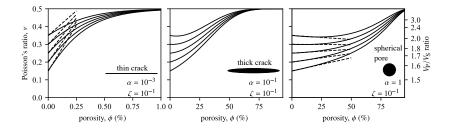
Model ●0 Key result 000 Conclusions O

Objectives

- find simple conditions for increase in $V_{\rm P}/V_{\rm S}$ with increasing fluid-saturated porosity,
- study the influence of matrix $V_{\rm P}/V_{\rm S}$ (porosity-free rock) on the result.
- Tool: effective medium approach. Isotropic case.

Key result 000 Conclusions O

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>


Differential effective medium approach

Compute effective elastic properties of material containing isotropic distribution of spheroidal pores filled with fluid. Key parameters are:

- $\zeta = \text{matrix compressibility/fluid compressibility},$
- $\alpha = \text{pore aspect ratio},$
- $\nu_0 = \text{Poisson's ratio of intact matrix.}$

Introduction	Model	Key result	Conclusion
00000	00	•00	0

Complex behaviour for non-thin cracks

Evolution of $V_{\rm P}/V_{\rm S}$ depends on appect ratio, but also on the initial Poisson's ratio!

イロト イポト イヨト イヨト

Sac

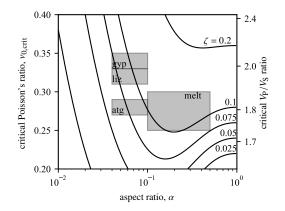
Mode 00 Key result $0 \bullet 0$

Conclusions O

Critical Poisson's ratio

Define $\nu_{0,\text{crit}}$ such that:

- if $\nu_0 > \nu_{0,crit}$, then V_P/V_S initially decreases with increasing fluid -saturated porosity,
- else $V_{\rm P}/V_{\rm S}$ initially increases (this is the conventional interpretation).


Key result for two end-member cases:

- for thin cracks, $\nu_{0,\text{crit}} \approx 0.157 \zeta/\alpha$,
- for spherical pores, $\nu_{0,\text{crit}} \approx 0.2 + 0.8\zeta$.

Model 00 Key result 00●

Conclusions O

Critical Poisson's ratio

For dehydration reactions, considering $\alpha \sim 10^{-1}$ (not very thin cracks, needed to accomodate large volume changes), $V_{\rm P}/V_{\rm S}$ might actually slightly decrease or remain stable at the onset of reaction. This is consistent with lab data shown previously.

シック・ 川 ・ 山 ・ 山 ・ ・ 山 ・ ・ 日 ・

Mode 00 Key result 000 Conclusions

Conclusions

- $V_{\rm P}/V_{\rm S}$ increases with fluid-saturated porosity for thin cracks and relatively incompressible fluid (classic result, not new),
- **but** this may not always be the case in nature, if pores have higher aspect ratio (or equivalently, tubular shapes, see Watanabe 1993, Takei 2002).
- at the onsest of dehydration reactions, $V_{\rm P}/V_{\rm S}$ might not increase dramatically, and might even decrease.
- a condition like $\nu_0 \lesssim 0.157 \zeta/\alpha$ should be made clear when interpreting high $V_{\rm P}/V_{\rm S}$ ratio as "fluid pressure" from seismic imaging.

Reference: Brantut N. and E. C. David (2019), Influence of fluids on V_P/V_S ratio: increase or decrease?, *Geophys. J. Int.* (216), 2037–2043. Codes: https://github.com/nbrantut/Poisson.git