Comparison of Airborne Peroxy Radical Measurements with MECO(n) model simulation during EMeRGe in Europe

Yangzhuoran Liu¹, Mariano Mertens², Maria Dolores Andrés Hernández¹, Midhun George¹, Vladyslav Nenakhov³, Astrid Kerkweg⁴, Patrick Jöckel², John P. Burrows¹ and the EMeRGe community

¹Universität Bremen, Institut für Umweltphysik (IUP), Bremen, Germany (lyzr@iup.physik.uni-bremen.de)

²Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

³Deutsches Zentrum für Luft- und Raumfahrt (DLR), Flugexperimente Mess- und Sensortechnik, Oberpfaffenhofen, Germany

⁴IEK-8, Forschungszentrum Jülich, Jülich, Germany

Online presentation for EGU2020 Session AS3.23: Impacts of emissions from major population centres on tropospheric chemistry and composition

Introduction

- The total sum of peroxy radicals, RO₂*, measured by the PeRCEAS (<u>Peroxy Radical Chemical Enhancement and Absorption Spectrometer</u>) instrument have been compared with the MECO(n) (MESSy-fied ECHAM and COSMO models nested n times) model simulated RO₂ (defined as the sum of HO₂ + CH₃O₂ + ISOOH + CH₃CO₃ + CH₃COCH₂O₂ + C₂H₅O₂ in the model) for the EMeRGe campaign in Europe in 2017;
- In total 7 missions flights have been analyzed for this study and 3 will be showed in this presentation in details.

Instrument measurement

The chemical amplification method is applied to amplify the conversion of radicals into NO_2 by a chain reaction with NO and CO as shown as (R1-R4):

$HO_2 + NO \rightarrow OH + NO_2$	(R1)
$OH + CO + O_2 \xrightarrow{M} HO_2 + CO_2$	(R2)
$RO_2 + NO \rightarrow RO + NO_2$	(R3)
$RO + O_2 \rightarrow R'CHO + HO_2$	(R4)

 NO_2 is measured by a sensitive cavity ring-down detector, the peroxy radical ambient concentrations can be determined after the lab determination of the amplification factor.

Figure 1: Photo on the top is the view from outside HALO aircraft where the highlighted place is the inlet for the instrument; the photo at the show the PeRCEAS instrument and the part of inlet inside the aircraft cabin. The arrows indicate the sample flow direction.

MECO(n) model

MECO(n) (Kerkweg and Jöckel, 2012a,b, Hofmann et al., 2012, Mertens et al., 2016, Kerkweg et al., 2018) is a global/regional chemistry-climate model developed by the MESSy consortium, which couples online the global chemistry-climate model EMAC with the regional chemistry-climate model COSMO-CLM/MESSy. The model results in this presentation provide COSMO-CLM/MESSy refinement with 7 km resolution, 330 x 310 horizontal gridboxes, timestep length = 60 s.

Measurement and model comparison

Three measurement flights were chosen as representative examples of the comparison between the PeRCEAS measurements and the MECO(n) model. Figure 2 is the flight track plotted with flight altitude.

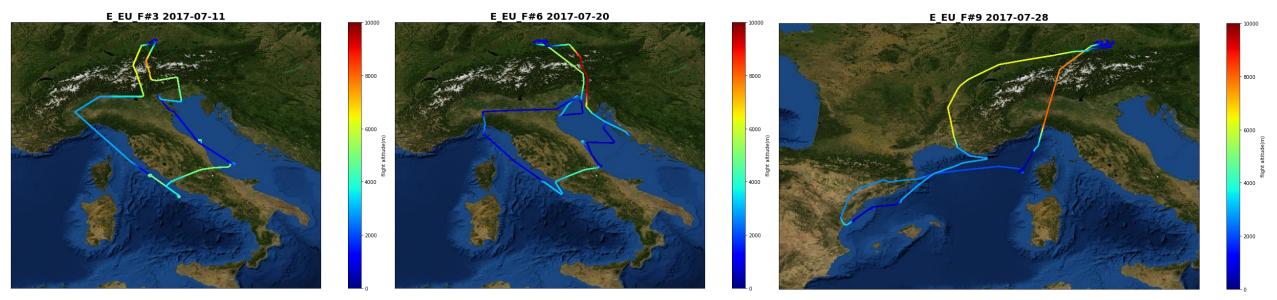
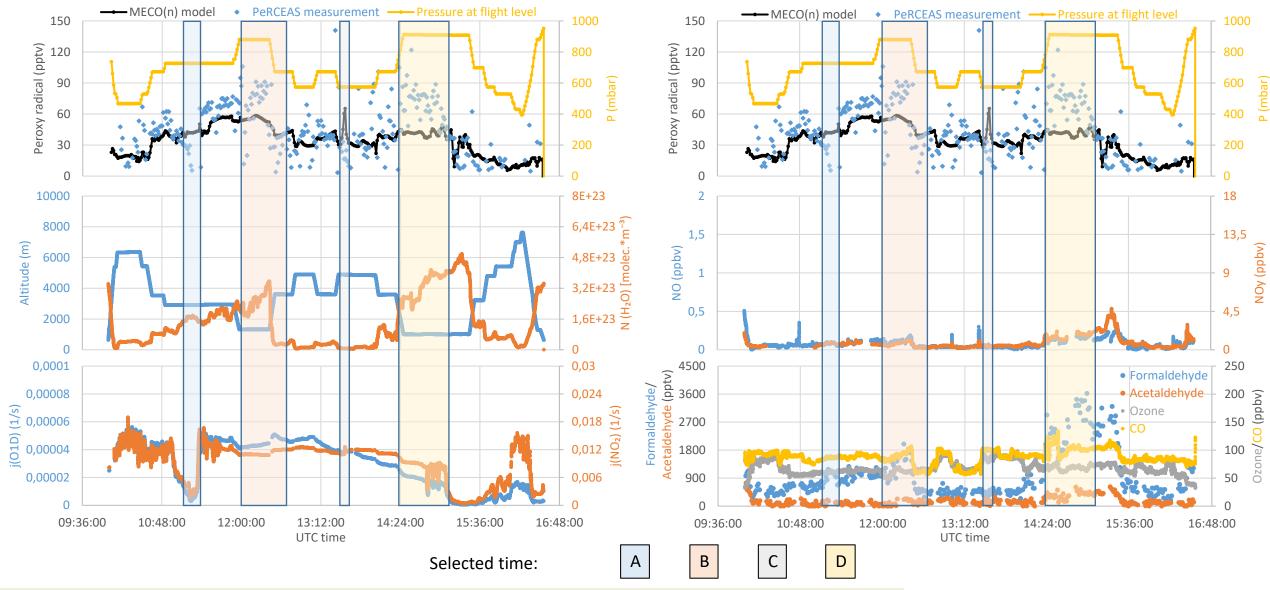
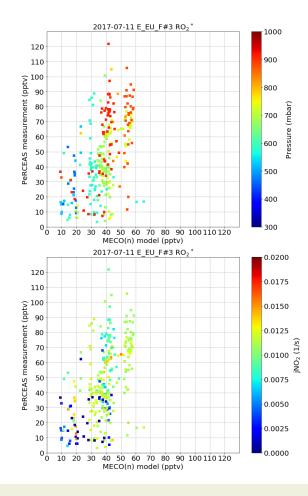
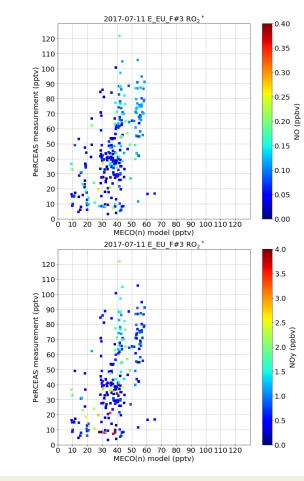
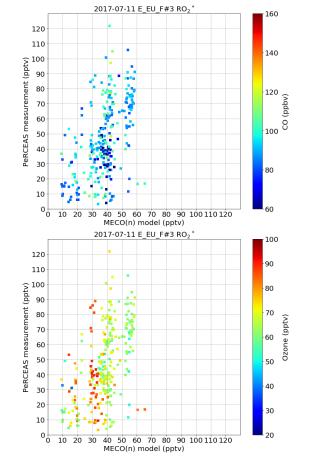



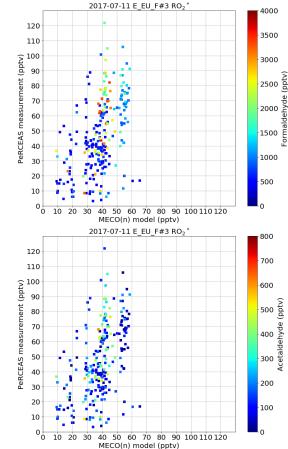
Figure 2: Flight track for E_EU_F#3, #6, #9 data from the sensor system of the HALO aircraft (BAHAMAS)

Temporal evolution EMeRGe E_EU_F#3 flight

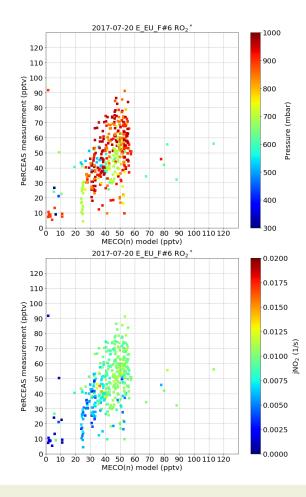


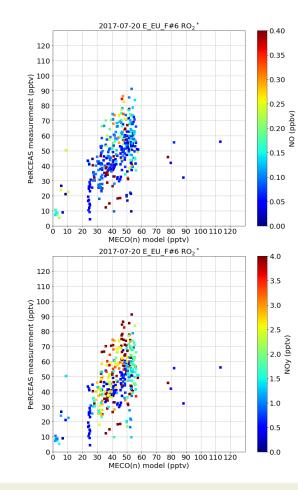

Comparison of the measured and modelled temporal evolution

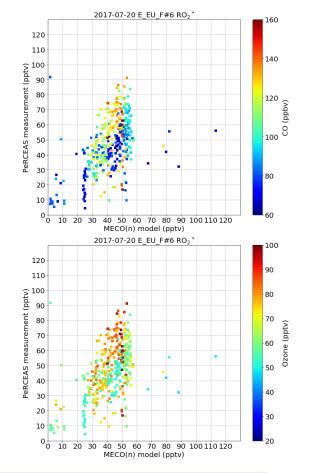

- The temporal evolution of modelled and measured peroxy radicals agree reasonably for air masses with low concentration of pollutants;
- Different air masses were probed during E_EU_F#3. High differences between model and measurements are marked in the temporal evolution plot (shaded areas). The model seems not to reproduce short-term variations in trace gases and water concentration in polluted air masses;
- Significant variations in formaldehyde and acetaldehyde (marked as B in the plot) correspond with variations in peroxy radical measurements that are not simulated by the model;
- The reasons for overestimations (marked as C in the plot) in the model data will be further investigated.

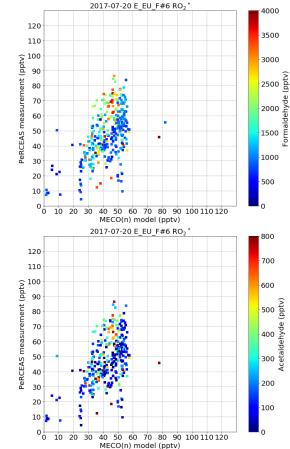


Model and measurement correlations E_EU_F#3

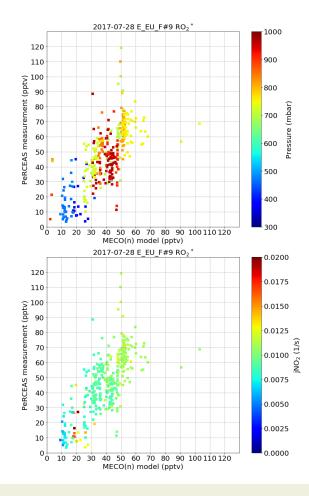


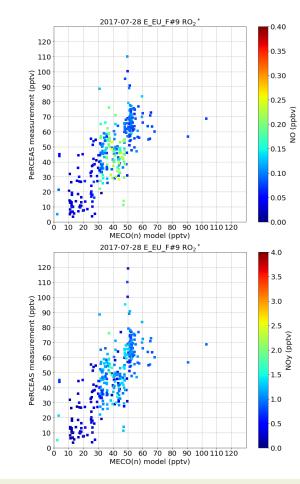


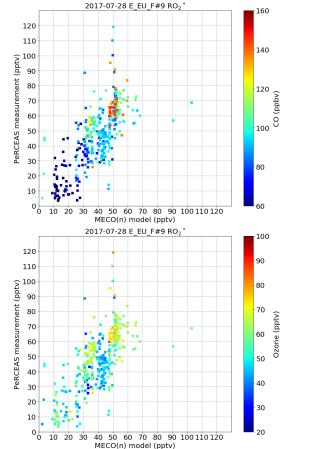




Model and measurement correlations E_EU_F#6







Model and measurement correlations E_EU_F#9

Discussion of the correlation plots

- Good correlations between model and measurements are systematically found at the lower values of the selected parameters, which agreed with the results from temporal evolution comparison;
- Sensible correlations between model and measurement correspond to periods of stable solar radiation as indicated by stable values in the photolysis rates;
- The number of points in the correlation plots changes due to missing measurement values;
- The model seems to underestimate significantly the measurements for events of high CO, O₃ formaldehyde (HCHO) and acetaldehyde (CH₃CHO).

Summary and outlook

- Model and measurements agree reasonably for periods with low to moderate variations in the peroxy radical mixing ratios. Short-term variations seem to be systematically underestimated by the model;
- The model seems to systematically underestimate the peroxy radicals measured in polluted plumes, typically associated with variations in peroxy radical precursors such as formaldehyde, acetaldehyde, and CO.
- Further comparison using different model sensitivities and trace gas inventories will be continued.

References

- Hofmann, C., Kerkweg, A., Wernli, H., and J. ockel, P.: The 1-way on-line coupled atmospheric chemistry model system MECO(n) Part 3: Meteorological evaluation of the on-line coupled system, Geosci. Model Dev., 5, 129{147, doi:10.5194/gmd-5-129-2012, URL http://www.geosci-model-dev.net/5/129/2012/, 2012.
- Kerkweg, A. and Jöckel, P.: The 1-way on-line coupled atmospheric chemistry model system MECO(n) Part 1: Description of the limited-area atmospheric chemistry model COSMO/MESSy, Geosci. Model Dev., 5, 87{110, doi:10.5194/gmd-5-87-2012, URL http://www.geosci-model-dev.net/5/87/2012/, 2012a.
- Kerkweg, A. and J•ockel, P.: The 1-way on-line coupled atmospheric chemistry model system MECO(n) Part 2: On-line coupling with the Multi-Model-Driver (MMD), Geosci. Model Dev., 5, 111{128, doi:10.5194/gmd-5-111-2012, URL http://www.geosci-model-dev.net/5/111/2012/, 2012b.
- Kerkweg, A., Hofmann, C., J• ockel, P., Mertens, M., and Pante, G.: The on-line coupled atmospheric chemistry model system MECO(n) { Part 5: Expanding the Multi-Model-Driver (MMD v2.0) for 2-way data exchange including data interpolation via GRID (v1.0), Geosci. Model Dev., 11, 1059{1076, doi:10.5194/gmd-11-1059-2018, URL https://www.geosci-model-dev.net/11/1059/2018/, 2018.
- Mertens, M., Kerkweg, A., Joockel, P., Tost, H., and Hofmann, C.: The 1-way on-line coupled model system MECO(n) { Part 4: Chemical evaluation (based on MESSy v2.52), Geosci. Model Dev., 9, 3545{3567, doi:10.5194/gmd-9-3545-2016, URL http://www.geosci-model-dev.net/9/3545/2016/, 2016.

Acknowledgements

- EMeRGe was partly funded by the Deutsche Forschungsgemeinschaft (DFG German Research Foundation) within the HALO-SPP 1294 *High Altitude and Long Range Research Aircraft (HALO)*.
- All the members and organizations from EMeRGe team offered a lot for cooperation and made the campaign successful.

