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Take home messages

» [useful] SST -> Sea ice response functions have finite timescales.

» Predictability of the Barents Sea ice cover increases [beyond pure
chance] when we use information from along the entire path of the
Norwegian Atlantic current.



Introduction: the coupled system
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OHT-sea ice linkage: Arthun et al. (2012), Onarheim et al. (2015), Li (2017) + many more Li and Born (2019)



A bit of theory

Assume a linear stochastic

system governed by a C@) = / G(n)F(t — 7)dr

response function G and a 0

forcing F.

We can write this systemina C=G-F

matrix form and solve for G _
G=C-F!

Finally, we can estimate f

the original timeseries C by C(t) = / G(t — 7)F(r)dr
convolvingGand F. t

—Tmax

If we have more than one

forcing (predictor), we can B=C.C
use multiple linear " ~
regression to solve for a C.=B-C

combined estimate




A bit of theory

: . Details

Assume a linear stochastic Timax
system governed by a C@) = / G(n)F(t — 1)dr .
response function G and a 0 Llne.ar trend removgd from bpth the

, sea ice and the forcing (predictor).
forcing F.
We can write this system in a C=GG.-F The-ar?alysms done on a monthly

. basis, i.e. we recover one response
matrix form and solve for G —1 :
G=C-F function for each month.

Fmally, \{ve ca_n estlmate R ! We focus on March, but the results
the original timeseries C by C(t) = / G(t — 7)F(r)dr are similar for other months,
convolvingGand F. I~ Timax

although predictabilityis weakerin

summer (as expected — little to no

ice in the Barents Sea).
If we have more than one

forcing (predictor), we can B=C- é
use multiple linear
regression to solve for a
combined estimate

All results are normalized by
C.=B-C standard deviations.




DATA

e Predictors: SST anomalies at
given sections in the Nordic
Seas

e SST enables the use of
observations

* Also tested: salinity, surface heat
flux, and ocean heat transport

 CMIP6 (piControl, control-1950,
omipl, omip2) + OI-SST
(observations)

* Target: Barents Sea ice cover
(concentration, volume)




Model response functions (G

OMIP based response
functions show 3-4 year
response timescale

PiControl based response
functions (grey) have a large
spread in response timescales
especially further south.

Note that 62N is close to the
Greenland-Scotland Ridge,
whereas 72N is roughly at
Barents Sea Opening
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South -> North

South -> North

Reconstructing modelled sea ice (OMIP, March)

* High correlation is concentrated close to the ice edge

* Dominated by short timescales
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Reconstructing modelled
sea ice (PiControl, March)

* In most cases high correlation is
concentrated close to the ice edge

e Large spread in timescales from few
years to 10 years (probably longer)
* Dblue ellipses highlight different
examples
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Changein R? when

Reconstructing modelled sea ice more than one

. section is used. Bold
(selected PiControl examples, March) — finesseismare.

adding random data.
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Reconstructing observed
sea ice (piControl, March)

All models have some skill, but the
skill is weak and at most explains
<30% of the variance at individual
sections

High correlations concentrated close
to the ice edge

Combining all sectionsis hardly
useful because of overfitting
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Summary & further development

» SST based response functions reveal a lagged signal along the Norwegian
Atlantic current

e 3-4 year timescales in OMIP-|
 Somewhat larger spread in piControl

* The model-based response functions have limited skill in reconstructing the
observed sea ice concentration at individual sections (<30%)

* Open Questions
* Do theresponse functions represent causal physical relations?
 Why does a combination of the different sections seem to provide extra information?
* Reduces noise?

* |dealized 1.5-D channel model provides insight into the physics (extra-slides)



Simple model

A\

>

Setup
Ua=5m/s
Uo=5cm/s
Ha = 1km

Ho = 50m

Da = 1E5 m2/s

Do =5E2 m2/s

The modelis run for 1000
years with monthly mean
output using white noise
and NAO-type forcing that
enters the model through
the heat flux term.

o7, a7, T, F aeTy
= _ua + Da + -
ot 0x 0x? H,-Cpo-pa Hy-Cp-py
oT, aT, T, F Taw — T, F
= —u, +D, _ 4 1AW " SW
ot 0. ox? H-Cpy - po T H-Cp - po

Sea ice is diagnosed from the heat budget: cooling
below freezing point producesice, warming above
freezing pointonly after all the ice is melted.

See also

Nilsson (2001)
Jeffress and Haine (2014)
Broome and Nilsson (2018)


https://www.tandfonline.com/doi/full/10.1080/16000870.2018.1453215

Effect of coupling on G in a simple model

March ice cover

For section that
is 1250 km from
the ice edge

Forcing: Synthetic NAO
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Note that in theory the
envelope should go to zero
at some long lag — here it
staysthe same



Effect of coupling on G, in a simple model

step

March ice cover Forcing: White Noise Forcing: Synthetic NAO
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Correlation suggest that length of G matters!

Ocean advectionresultsin a
short timescales

Slab ocean response results
longer timescales

Secondary peak due to
forcing autocorrelation
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Summary from simple model results

* Response timescale:
* Relatively short and distinctin ocean dominated system.
e Longer and wider when atmosphere (mixed layer) dominate.

* For prediction purposes the response functions should be of some
finite length!
e Otherwise noise will decrease the correlation

e Auto-correlated forcing influences the response function.



