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Data sampling 1s a necessary procedure to train a landslide susceptibility model.
Different sampling strategies have been considered in previous studies, but few of them

* Training model
The RF, DT, and LR model generated in RStudio software using the

same three training
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have focused on its effect on modeling performance. The aim of this study to analyze the subsets as SUB1. SUB2. and SUB3
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Figure 3. Maps of landslide conditioning factors:
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Table. Model validation
Tl SUBI1 SUB2 SUB3
RF LR DT RF LR DT RF LR DT
Overall accuracy | 0921 0.848 0.881] 0.911 0.846 0.864| 0.907 0.822 0.836
Kappa 0.842 0.696 0.763| 0.822 0.692 0.727| 0.814 0.644 0.672
Recall (PA) 0.913 0.830 0.893| 0.862 0.826 0.727| 0901 0.826 0.897
Precision (UA) 0.928 0.861 0.873| 0.956 0.860 1.000| 0.910 0.820 0.799
F1-score 0.920 0.845 0.883| 0.906 0.843 0.842| 0.907 0.8223 0.845
AUC 0.972  0.929 0.943| 0.969 0.923 0.945| 0.970 0.919 0.924
s e UL Std. Error 0.007 0.011 0.011] 0.007 0.012 0.009| 0.006 0.011 0.012
a’:ND’; B:Max daile rainfall;‘ c‘:HAND; dDiéfant

- Overall, our work were successfully employed the effect of different sample possession
using three multivariate models. The results are an a abundance of consistency performance
as the SUB1 gave the highest accuracy, followed by SUB2, and the lowest 1s SUB3.
However, in terms of PA and UA indices, the SUB2 seems to be made underestimate (RF and
DT). According to the result, LSDI, slope, TWI, landcover, and NDVI
important factors. Remarkably, LSDI contribution indicating its capability in landslide
susceptibility modeling. In terms of model application, the Random forest 1s much
recommended based on its contribution to our case study.

are the most
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