
Machine Learning-based inference system to detect the phenological stage of a citrus crop for helping deficit irrigation techniques to be automatically applied.

Motivation
Enabling smart irrigation systems to be 
more efficient in terms of saving water and 
other resources by applying intelligent 
techniques for visual analysis.
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Objectives

Materials and methods

Conclusion

In this work, deep learning techniques are 
applied for phenological stage prediction of 
a citrus crop using data from a camera.
Additionally, several parameters of the 
network will be fine-adjusted with the aim 
of analysing the performance impact in the 
final prediction system.

Several pictures of citrus crop trees at diffe-
rent stages are taken (see Fig. 1). A 
standard RGB camera is used (digital 
camera with sensor IMX363 Exmor RS).
These images are classified manually, using 
the standard criteria of phenology stages, 
as stated in [1].

Training and test

Since the aim of the network is to obtain a 
continuous value instead of a discrete one, 
the problem to solve is a regression.
The optimization algorithm used to train 
the neural network is the Adam ( [3] 
algorithm.
Another important choice is the metric 
that is used to minimize the error of the 
network. In this case, the MSE¹ is used.
Then, some parameters of the network, 
such as the numbers of neurons of the last 
dense layer or the number of filters (along 
with their sizes), will be empirically adjust 
for testing their impact in accuracy and 
efficiency of the system.
Finally, a collection of images included in a 
validation set (which are different from the 
training set), will be used to calculate the 
phenological stage in order to test the 
prediction accuracy.

This learning system has been implemen-
ted  by using Tensorflow [2], the Deep 
Learning framework made by Google.
Images are preprocessed by the 
Tensorflow API (Application Programming 
Interface) in order to be suitable to use in 
a Deep Learning architecture.
Each one is divided into 8 pieces, ignoring 
the original image borders. The pieces are 
then scaled to a size of 256x256 pixels.
Finally, the preprocessed image data is 
introduced in the following neural network 
whose architecture is defined in Figure 2.

First, parameters involved in the training stage 
will be properly defined, by using empirical 
techniques for adjusting them.
Given the available  data (304 pictures of trees), 
two datasets will be generated, one for training, 
with 200 pictures, and another one for testing, 
which includes the rest of the images.
Each training process consists of 10 epochs. 
This will ensure that the network extracts all the 
necessary features to conduct the regression 
procedure accurately.
During the first stage, the number of hidden 
neurons is a parameter to be tunned. Values 
from 20 to 100 in steps of 10 neurons have been 
tested. Tuning results are shown in Figure 3.

guidelines remain constant. It is remarkable 
that adding more neurons is useless at some 
point as there is no major impact on the 
prediction accuracy, but the required 
calculation get more complex.
The second experiment made in this work has 
been focused on analysing the importance of 
the number of convolutional layers and their 
parameters. For this purpose, the same training 
process is executed with one layer and two 
layers. The previous results are taken into 
account, keeping the last dense layer with 40 
neurons. For each variation of the architecture, 
10 training process were run. After each 
training, the test dataset was used to obtain an 
indicator of the accuracy of the network. The 
values are then shown in Table 1. 

This work demonstrates the feasibility of using 
machine learning and deep learning techniques 
in order to extract plant features from images 
with several degrees of success. 
The architectures developed in this work will be 
a suitable starting point for other projects that 
rely on these techniques.

Finally, several neural networks architectures 
has been analysed and compared in order to 
define the minimum structural requirements to 
get accurate results and to prove the possible 
effects caused by an insufficient architecture.
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Convolutional layers 1 1 2
Convolutional filters 10 10 10→ 15
Filter size 4 8 4→ 5
Mean of MSE 0.1111 0.0396 0.0137
Variance of MSE 0.0054 0.0025 0.0000

It is noticeable that the one layer architecture 
results in a significantly less accurate network. 
Furthermore, it is possible that the network 
converges in a local minimum, decreasing the 
performance in those runs.
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Laying the ground work of the use of 
machine learning algorithms to extract 
features and characteristics from image 
data of crops.
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Figure 3. MSE in testing dataset vs hidden layer neurons
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Figure 2. Main deep learning network architecture

Figure 1. One of the images part of the dataset

While the final values are different between 
runs of the training processs, the main 

Table 1. MSE statistics vs neural network architecture.


