

Post-glacial dynamics of alpine Little Ice Age glacitectonized frozen landforms (Swiss Alps)

A glacial-to-periglacial or a glacial-to-post-periglacial transition?

Julie Wee*, Reynald Delaloye and Chloé Barboux *julie.wee@unifr.ch

Department of Geosciences, University of Fribourg, Switzerland

EGU 2020: SHARING GEOSCIENCE ONLINE 06.05.2020

Map of 1864 (maximal extent of LIA glaciers)

Map of potential permafrost distribution (FOEN)

Methods

Preliminary results

Outlook

Some Little Ice Age (LIA) glaciers advanced within the belt of mountain permafrost, which infers that glaciers and frozen debris landforms have often existed - and in some cases still exist - in close proximity, the former having altered the development, spatial distribution and thermal regime of the latter.

Context of research

Methods

Preliminary results

Outlook

Post-LIA glacier forefields in permafrost environments & Associated glacitectonized frozen landforms (GFL)

Glacier dominant regime

Periglacial (under permafrost conditions) or even post-periglacial (permafrostdeprived) regime UNI

FR

Methods

Outlook

Long-term glacier recession

&

Adapted from Begert and Frei (2018) and MeteoSwiss (2019)

Thermal and mechanical readjustments

Expressed by a combination of **mass-wasting** processes and ice melt or thaw-induced subsidence Methods I

2 3 4

Preliminary results

Outlook

Mass-wasting processes occurring in a periglacial context have been formerly inventoried using **DInSAR**

Focusing solely on mass-wasting glacitectonized frozen landforms, the former inventory allowed the identification of the latter under various spatial configurations within LIA glacier forefields

Delaloye et al., 2010; Barboux et al., 2014

< 1 cm/y 1-3 cm/y 3-10 cm/y 10-30 cm/y 30-100 cm/y > 100 cm/y

A Starl

InSAR image: 24.09.2017-06.10.2017 (12 days) Sentinel-1 descending mode

Methods I

Disconnected

e APChalland

InSAR image: 24.09.2017-06.10.2017 (12 days) Sentinel-1 descending mode

Glacitectonized frozen landforms (push-moraine)

ha

zn

< 1 cm/y1-3 cm/y 3-10 cm/y 10-30 cm/y 30-100 cm/y > 100 cm/y

Disconnected &

Connected

Compilation and analysis of existing datasets

Over 20-year of permafrost monitoring in glacier forefields

1) ground surface temperature (GST), 2) kinematical and 3) electrical resistivity datasets

Analysis of high-resolution and historical aerial images

- Generation of multi-temporal Digital Elevation Models (DEMs)
- Assess spatio-temporal geomorphological changes Processing and analysis of UAV-derived images and LiDAR-derived DEMs

Outlook

Aget Deceleration and ice melt-driven subsidence

Context of research

Methods

Processes influencing change in surface elevation:

- 1. Loss in elevation due to downslope movement
- 2. Decrease or increase in elevation due to extending or compressing flow
- 3. Change in elevation in response to melting of ground ice

Contribution of ice melt-induced subsidence to vertical component of surface displacement:

- Point Ag-148 = 100 %
- Point Ag-149 = 92.7 %

 $\Delta z_{\text{theoretical}} = \Delta xy \times \tan(\alpha_{T_0}) \pm v_{\text{extension/compression}} \times h$

Contribution of ice melt-induced subsidence to vertical component of surface displacement [m]

Contribution of ice melt-induced subsidence to vertical component of surface displacement [%]

$$= \Delta z_{\text{measured}} - \Delta z_{\text{theoretical}}$$
$$= \frac{\Delta z_{\text{measured}} - \Delta z_{\text{theoretical}}}{\Delta z_{\text{measured}}} \times 100$$

Context of research

Low ice-water content ratio

Deformation at the shear horizon

Methods

to the ground ice content as well as an

acceleration of rock glacier creep (Staub, 2015)

Methods

Preliminary results

Outlook

Ice melt-driven subsidence **Ritord** Glacitectonized frozen landform Overall surface changes: 30-100 cm/y Debris-covered glacier

© Wee et al

Aget

- Go further in the past by analysing historical aerial images (Swisstopo)
- Gather high-resolution aerial images (UAV-flights) 1st flight was in 2019

Ritord

- Repeat geoelectrical measurements throughout the entire glacier forefield
- Install permanent dGPS to capture in-situ kinematical changes
- Go further in the past by analysing historical aerial images (Swisstopo)
- Gather high-resolution aerial images (UAV-flights)

Extend similar analyses to other sites