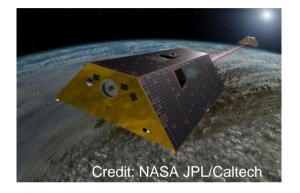


ANALYZING THE EFFECT OF EARTHQUAKE CORRECTION ON GRACE-DERIVED DROUGHT INDICATORS

Roelof Rietbroek¹, **Helena Gerdener**¹, Olga Engels¹, and Jürgen Kusche¹ ¹ Institute of Geodesy and Geoinformation, University of Bonn

© Authors. All rights reserved


EGU 2020 May 7, 2020

MOTIVATION

n n

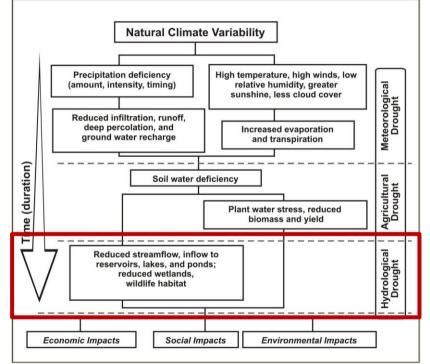
B

- Satellite missions GRACE (Gravity Recovery and Climate Experiment) and GRACE-FO (GRACE-Follow On)
 - GRACE measured mass redistributions of the Earth

- Not only hydrological signals cause mass redistributions but also, among others, large earthquakes
 - Large earthquakes mask the observation of other hydrological processes

GLOBAL WATER CYLCE

- GRACE measurements are transformed to total water storage anomalies (TWSA)
- **TWSA** include groundwater, surface water, soil moisture, snow and ice
- In-situ observations of the global water cycle are sparse
- → GRACE offers great possibility to observe changes in all water storages with **global** resolution from space
- Analyzing single storage might be insufficient for processes like drought detection

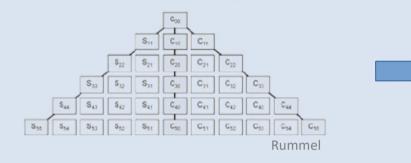

DROUGHT

Hydrological drought

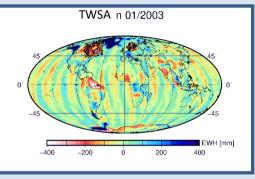
... is one of the processes GRACE can observe

... is the effect of precipitation shortfalls on surface/ subsurface water

... has a phase shift to meteorological drought



Credit: National Drought Mitigation Center, University of Nebraska-Lincoln, U.S.A



GRACE PROCESSING

GRACE gravity potential coefficients (L2)

Total water storage anomalies (TWSA, L3)

Transformation of L2 to final L3 in official processing centers (e.g., CSR, GFZ, JPL)

 Replace degree-1 and c₂₀coefficients
 Spatial filtering

- Removal temporal average -Spherical harmonic synthesis
- GIA removal

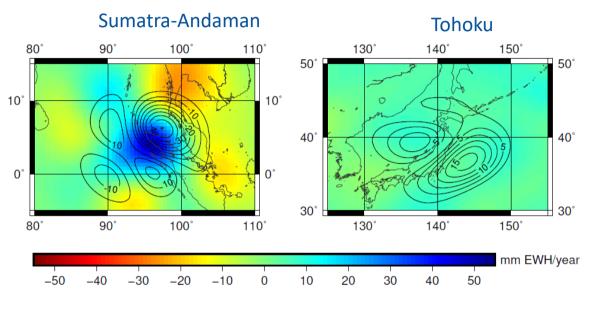
New step included here:

Earthquake correction for large earthquakes (> =M9.0)

EARTHQUAKE CORRECTION

Main processing steps for earthquake correction:

- 1) Backward modeling of spherical harmonic coefficients (SHC) to geoid changes (L2 to L3) following Wahr et al. (1998)
- 2) Estimation of earthquake correction based on co- and postseismic signals using a nonlinear Bayes estimator following Einarsson et al. (2010)

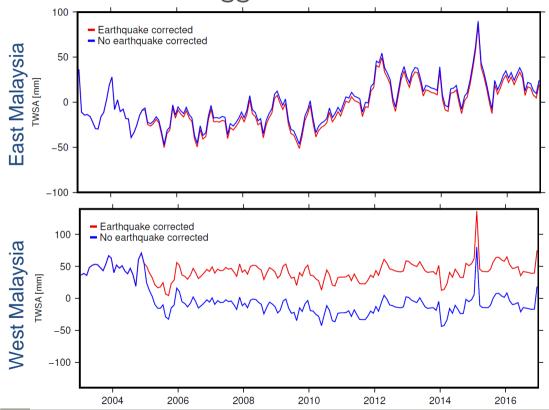

$$\Delta GC_{EQ}(\theta_i, \lambda_j, t) = C_{v_{co}}H_{t_v}(t) + C_{v_{post}}H_{t_v}(t) \left(1 - e^{-\frac{t - t_v}{\tau}}\right).$$

Co- and postseismic model coefficients Heaviside step function Delayed onset of postseismic relaxation Relaxation constant ... of respective earthquake v

- 3) Forward modeling of geoid changes to spherical harmonic coefficients (L3 to L2)
- Processing of SHC to TWSA (L2 to L3) continued

GRACE LINEAR TRENDS – EARTHQUAKE CORRECTED

Download earthquake corrected TWSA:


https://www.apmg.uni-bonn.de/daten-undmodelle/grace-monthly-solutions

- Earthquake correction applied for Tohoku earthquake in 2011 (M9.1) and Sumatra-Andaman earthquake in 2004 (M9.1)
- Contour lines show difference of uncorrected minus corrected trends
- Larger trend differences over Peninsular Malaysia
- → Earthquakes potentially masks other signals in this region

Deggim et. al, in preparation

7

COMPARISON OF CORRECTED AND UNCORRECTED TWSA IN MALAYSIA

UNIVERSITÄT BONN

- East Malaysia shows minor differences between corrected and uncorrected TWSA
- West Malaysia (or Peninsular Malaysia) shows a strong decrease in uncorrected TWSA end of 2004 resulting from the earthquake
- The corrected TWSA do not contain the strong decrease
- → Has the correction an effect on drought identification over Peninsular Malaysia?

Deggim et. al, in preparation

DROUGHT INDICATORS

INDICATORS FOR HYDROLOGICAL DROUGHT

- Characterization (retroperspective), monitoring and triggering management plan for drought
 Abnormal
- Usually based on single fluxes (e.g. streamflow, reservoir levels)
- Here based on GRACE TWSA
- Describe severity, location, timing and duration of drought
- Indicator values are classified into severity classes to enable e.g. policy making
- Problem: No validation of drought indicators
- Framework that compares GRACE-based drought indicators and analyzes the propagation of drought through these indicators: Gerdener et al. (2020)

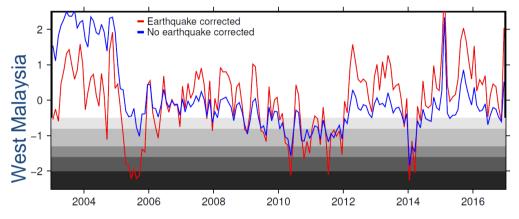
Moderate

Extreme

Exceptional

Severe

GRACE-BASED DROUGHT INDICATORS: ONE EXAMPLE


Basics	GRACE-based Drought Severity Indicator (DSI) - Used in Zhao et al. (2017) - Standardization wrt. climatology		
Equation	$DSI_{i,j} = \frac{TWSA_{i,j} - TWSA_{j}}{\sigma_{TWSA_{j}}}$	 'Climatological' mean of TWSA of month i over all years 'Climatological' standard deviation of TWSA of month j over all years j month, i year 	
Severity classes	Output of DSI is classified into these five drought severity classes	Drought Severity Level Abnormal Moderate Severe Extreme Exceptional	GRACE-DSI $-0.8 < Z_{i,j} \le -0.5$ $-1.3 < Z_{i,j} \le -0.8$ $-1.6 < Z_{i,j} \le -1.3$ $-2.0 < Z_{i,j} \le -1.6$ $Z_{i,j} \le -2.0$

Effect of earthquake correction on GRACE drought indicators

EARTHQUAKE REMOVAL IN WEST MALAYSIA USING DSI

- Uncorrected: 2010/2011 mainly moderate dry, 2014 severe dry
- Corrected: 2010/2011 mainly severe dry, 2005 and 2014 exceptionally dry
 - \rightarrow A third drought identified
 - \rightarrow Droughts more intense
- Findigs are supported by literature (e.g. EM-DAT database, Hashim et al. (2016)
- Strong difference before end 2004, Reason: Indicators are computed w.r.t. climatology

- Abnormal
- Moderate
- Severe
- Extreme
- Exceptional

Deggim et. al, in preparation

CONCLUSION & OUTLOOK

Conclusion

- 1) Drought events are masked by earthquake signals in Peninsular Malaysia, intensity of drought is increased after applying correction
- 2) Complete period of GRACE indicator time series is affected
- 3) Earthquake correction may become a standard tool in GRACE and GRACE-FO time series analysis of level-3 data

Outlook

- Apply methodology to different hydrological processes
- Comparison of findings with model outputs

GLOBE DROUGHT PROJECT

- This work is part of the GlobeDrought project funded by BMBF
- Aim: Developing a web-based drought information system
- Components hazard, vulnerability, and exposure are combined to derive drought risk
- Use GRACE for considering hydrological drought, which is part of drought hazard

Einarsson, I, Hoechner, A., Wang, R., Kusche, J.: Gravity changes due to the Sumatra-Andaman and Nias earthquakes as detected by the GRACE satellites: a reexamination, *Geophysical Journal International*, Volume 183, Issue 2, November 2010, Pages 733–747, https://doi.org/10.1111/j.1365-246X.2010.04756.x

EM-DAT: The Emergency Events Database, Universitecatholique de Louvain (UCL) – CRED, D. Guha-Sapir,, Brussels, Belgium, available at: https://www.emdat.be/, last access 20.01.2020.

Gerdener, H., Engels, O., and Kusche, J.: A framework for deriving drought indicators from the Gravity Recovery and Climate Experiment (GRACE), Hydrol. Earth Syst. Sci., 24, 227–248, https://doi.org/10.5194/hess-24-227-2020, 2020.

- Hashim, M., Reba, N. M., Nadzri, M. I., Pour, A. B., Mahmud, M. R., MohdYusoff, A. R., ... & Hossain, M. S. (2016). Satellite-based run-off model for monitoring drought in Peninsular Malaysia. *Remote Sensing*, 8(8), 633.
- Mayer-Gürr, T., Behzadpour, S., Ellmer, M. Kvas, A. Klinger, B., Zehentner, N. (2016): ITSG-Grace2016 Monthly and Daily Gravity Field Solutions from GRACE. GFZ Data Services. <u>http://doi.org/10.5880/icgem.2016.007</u>

Wahr, J., Molenaar, M., & Bryan, F. (1998). Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE. *Journal of Geophysical Research: Solid Earth*, *103*(B12), 30205-30229.

Zhao, M., Velicogna, I., & Kimball, J. S. (2017). A global gridded dataset of grace drought severity index for 2002–14: Comparison with pdsi and spei and a case study of the australia millennium drought. *Journal of Hydrometeorology*, *18*(8), 2117-2129.

Contact: M.Sc. Helena Gerdener

gerdener@geod.uni-bonn.de