A simulator for the CLARA-A2 cloud climate data record and its application to assess EC-Earth polar cloudiness

Salomon Eliasson¹, Karl-Göran Karlsson¹ Ulrika Willén¹

¹Swedish Meteorological and Hydrological Institute

EGU online conference

OUTLINE

CLARA-A2 simulator

Simulated cloud sensitivity: Optical depth threshold for cloud sensitivity

Simulated cloud sensitivity: Probability of detection

Simulated cloud sensitivity-different outcomes

Arctic cloud climate in the summer

Summary

CLARA-A2 simulator

- CLARA-A2 is a EUMETSAT CM SAF cloud dataset based on 34 years of data from meteorological polar-orbiting satellites (Karlsson et al., 2017).
- The simulated cloud mask more realistically reflects the actual cloud mask performance of the observations than other COSP simulators

Simulated variables

Cloud variable	Categories	day/night
Cloud fraction	total, ice, liquid, low, mid, and high	day/night
Cloud top	height, temperature, pressure	day/night
$ au_{\mathcal{C}}$	liquid, ice	day only
r _e	liquid, ice	day only
CWP	liquid, ice	day only
CTP- τ_c 2D histograms	liquid, ice	day only

au_c -threshold for cloud sensitivity

- τ_c -threshold is the cloud thickness where a thin cloud has a 50% chance of being detected.
- The standard is to rely on a global average τ_c -threshold to simulate clouds (τ_c =0.225).
- In some regions this is inappropriate.

Probability of detection

- An equivalent way to measure the performance of the CLARA-A2 dataset is by POD as a function of optical depth
- The POD generally increases for increasingly thick clouds, and reaches somewhat "asymptotic values" at high optical depths.
- The POD Performance differs depending on geographical location

The probability of detecting clouds that have τ_c near 0.125 and 0.55 for day and night retrievals

- Easier to detect thicker clouds, but results are regionally variable
- There is a noticeable difference in the performance between day and night

How does a more realistic cloud mask simulation affect model evaluation?

Simulations based on EC Earth minus CLARA-A2: January 1982–2015

■ #1: global τ_c -limit

■ #2: spatially variable τ_c -limit

■ #3: Using POD

How does a more realistic cloud mask simulation affect model evaluation?

Simulations based on EC Earth minus CLARA-A2: July 1982–2015

■ #1: global τ_c -limit

42: spatially variable τ_c -limit

■ #3: Using POD

Arctic cloudiness in sunlit conditions

Simulations based on EC Earth minus CLARA-A2/ISCCP-H: JJA 1983–2015

- CLARA simulator uses POD for cloud mask
- ISCCP simulator uses global τ_c -limit
- Very different analysis depending on simulator

Summary

- Using the validation results from Karlsson & Håkansson (2018), we make a more realistic simulated cloud mask for fairer comparisons
- Is documented fully in Eliasson et al. (2020)
- The simulator code is on Github
- Shortly implementing the simulator into the official COSP distribution

@ ①

- Eliasson, S., Karlsson, K.-G., & Willén, U. (2020). A simulator for the clara-a2 cloud climate data record and its application to assess ec-earth polar cloudiness. *Geoscientific Model Development*, *13*, 297–314.
- Karlsson, K.-G., Anttila, K., Trentmann, J., Stengel, M., Meirink, J.-F., Devasthale, A., Hanschmann, T., Kothe, S., Jääskeläinen, E., Sedlar, J., Benas, N., van Zadelhoff, G. J., Schlundt, C., Stein, D., Finkensieper, S., Håkansson, N., & Hollmann, R. (2017). CLARA-A2: the second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data, . *17*, 5809–5828.
- Karlsson, K.-G., & Håkansson, N. (2018). Characterization of AVHRR global cloud detection sensitivity based on CALIPSO-CALIOP cloud optical thickness information: demonstration of results based on the CM SAF CLARA-A2 climate data record, . 11, 633–649.