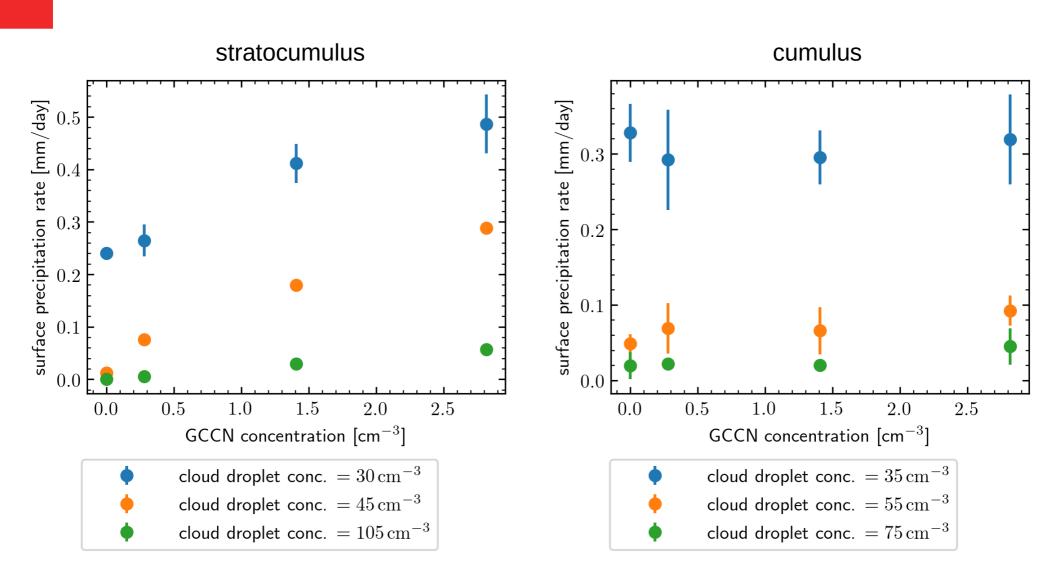
Giant cloud condensation nuclei and precipitation in marine clouds

Piotr Dziekan, Jorgen Jensen, Wojciech Grabowski, Hanna Pawlowska

Giant cloud condensation nuclei (GCCN)


- Aerosols with large dry radii, typically $r_d > 1 \mu m$
- Droplets formed on GCCN can grow to r > 20µm through condensation, hence they can initiate collision-coalescence
- Over oceans, small concentrations of sea-salt GCCN are released from breaking waves

LES with GCCN

- Marine stratocumulus (Dycoms RF02)
- Marine cumulus (RICO)
- Various GCCN and CCN concentrations

- University of Warsaw Lagrangian Cloud Model (UWLCM)
- Lagrangian microphysics (super-droplet method):
 - solute effect included in growth equation
 - explicitly modeled droplet activation
 - no numerical diffusion in size spectrum
 - CCN and GCCN have different hygroscopicities

Precipitation vs GCCN conc.

Comparison with observations

observation	LES without GCCN	LES with GCCN
¹ Sc: 0.04 mm/h cloud base precip. N _{GCCN} =1.89/cc	0.004 mm/h	0.03 mm/h
² Sc: from 0.24 mm/d to 0.46 mm/d surface precip. Surface wind speed 9.5m/s	0.01 mm/d	0.22 mm/d $N_{GCCN} = 1.89/cc \text{ for this}$ wind speed ¹
³ Cu: no effect of GCCN on precipitation	Very low sensitivity of precipitation to GCCN	

¹ Jung et al. *Atmos. Chem. Phys.* (2015)

² Ackerman et al. *MWR (2019)*

³ Reiche & Lasher-Trapp *Atmos. Res.* (2010), Minor et al. *J. Atmos. Sci.* (2011)

Conclusions

- Wave-released giant sea-salt aerosols:
 - significantly increase precipitation in marine stratocumuli, in particular for moderate CCN concentrations
 - do not have much impact on precipitation in marine cumuli, because marine cumuli produce small concentrations of large droplets even without GCCN