Quantitative reconstruction of past climate mean states in the Atacama Desert using hydrogen and triple oxygen isotopes of gypsum hydration water

Claudia Voigt ${ }^{1}$, D. Herwartz ${ }^{1}$, and M. Staubwasser ${ }^{1}$

${ }^{1}$ Institute of Geology and Mineralogy, University of Cologne, Germany
geoverbund

Schematic illustration of isotope systematics during evaporation and gypsum precipitation

$\delta^{18} \mathrm{O}$ (not to scale)

$\delta^{18} \mathrm{O}$ (not to scale)

Craig-Gordon function (describes isotopic composition of an evaporating water body):
f (relative humidity, $\alpha_{\text {eq }}$ (f temperature), $\alpha_{\text {kin }}\left(f\right.$ wind parameter), $\left.\delta^{18} \mathrm{O}_{\text {inflow }}, \delta^{18} \mathrm{O}_{\text {vapor }}\right)$

AW = ambient water
during gypsum formation
SBW = structurally bonded water in gypsum

Study sites in the Atacama Desert, N-Chile

Recent salt lakes

Paleo sites (both Pliocene age)

Results of isotopic measurements

\qquad Evaporation trendlines observed in recent salt lake systems

- Tiliviche
$\square \quad$ Mejillones

Model results

Tiliviche

$$
\mathrm{rH}=71 \pm 6 \%, \mathrm{~T}=37 \pm 2^{\circ} \mathrm{C}
$$

Mejillones

$$
\mathrm{rH}=61 \pm 3 \%, \mathrm{~T}=34 \pm 4^{\circ} \mathrm{C}
$$

The best fit model solution for relative humidity (rH) and temperature (T) were determined by fitting the C-G function through measured isotopic data constraining other model input parameters ($\delta_{\text {inflow, }} \delta_{\text {vapor }}$ and a parametrized value for wind-induced turbulence (n)) in site-specific reasonable ranges.

Sensitivity of modelled relative humidity to major input variables

Tiliviche

The modelled value of rH (red line) is relatively robust to changes in $\mathrm{T}(\mathrm{a})$ and $\delta^{18} \mathrm{O}_{\text {inflow }}$ (b). In contrast, increasing uncertainty in the turbulence coefficient $n(c)$ and $\delta^{18} \mathrm{O}_{\text {vapor }}(\mathrm{d})$ may lead to over- or underestimation of rH . The model suggests about 10% higher rH using n as a free variable and about 10% lower $r H$ for the extended range of $\delta^{18} \mathrm{O}_{\text {vapor }}$ as shown.

