

Quantitative reconstruction of past climate mean states in the Atacama Desert using hydrogen and triple oxygen isotopes of gypsum hydration water

Claudia Voigt¹, D. Herwartz¹, and M. Staubwasser¹

¹Institute of Geology and Mineralogy, University of Cologne, Germany

Schematic illustration of isotope systematics during evaporation and gypsum precipitation

scale)

d-excess

 δ^{18} O (not to scale)

 δ^{18} O (not to scale)

Craig-Gordon function (describes isotopic composition of an evaporating water body):

f (relative humidity, α_{eq} (f temperature), α_{kin} (f wind parameter), $\delta^{18}O_{inflow}$, $\delta^{18}O_{vapor}$)

AW = ambient water during gypsum formation

SBW = structurally bonded water in gypsum

Study sites in the Atacama Desert, N-Chile

Recent salt lakes

Paleo sites (both Pliocene age)

Results of isotopic measurements

Evaporation trendlines observed in recent salt lake systems

- Tiliviche
- □ Mejillones

SBW = structurally bonded water in gypsum -> measured

AW = ambient water during gypsum formation -> calculated using $\alpha_{eq, SBW-AW}$

Model results

The best fit model solution for relative humidity (rH) and temperature (T) were determined by fitting the C-G function through measured isotopic data constraining other model input parameters (δ_{inflow} , δ_{vapor} , and a parametrized value for wind-induced turbulence (n)) in site-specific reasonable ranges.

Sensitivity of modelled relative humidity to major input variables

The modelled value of rH (red line) is relatively robust to changes in T (a) and $\delta^{18}O_{inflow}$ (b). In contrast, increasing uncertainty in the turbulence coefficient n (c) and $\delta^{18}O_{vapor}$ (d) may lead to over- or underestimation of rH. The model suggests about 10 % higher rH using n as a free variable and about 10 % lower rH for the extended range of $\delta^{18}O_{vapor}$ as shown.