

Learning main drivers of crop dynamics and production in Europe

Anna Mateo-Sanchis, Maria Piles, Julia Amorós-López, Jordi Muñoz-Marí, Álvaro Moreno, Jose E. Adsuara, Adrián Pérez-Suay, Gustau Camps-Valls

Remote Sensing applications in the Biogeosciences

Intro

- Accurate crop yield estimation is relevant, many implications [1,4]
- Climate change poses new scenarios for managing fields [5,6]
- Crop yield estimation from remote sensing data [1,4]

Climate change has likely already affected global food production

Deepak K. Rayo¹*, Paul C. West¹, Michael Clark^{2,3}, James S. Gerber¹, Alexander V. Prishchepov⁴, Snigdhansu Chatterjee⁵

Global Warming Threatens to Dry Out Europe's Crop Fields

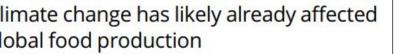
European satellite data and atmospheric models are sending warnings to farmers about climate change.

By Jonathan Tirone

Local food crop production can fulfil demand for less than one-third of the population

Pekka Kinnunen ⊠, Joseph H. A. Guillaume, Maija Taka, Paolo D'Odorico, Stefan Siebert, Michael J. Puma, Mika Jalava & Matti Kummu 🖾

Nature Food 1, 229-237(2020) Cite this article



Goals

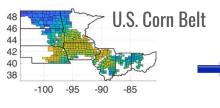
- G1. Study the transportability of machine learning models across regions
- G2. Study the relevance of agro-ecological drivers for crop yield estimation
- G3. Explore unique capabilities of microwave satellite data: sensing water in soils and vegetation

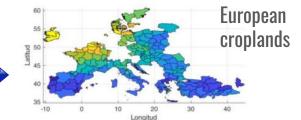
Previous methodology [4]

Synergistic integration of optical and microwave satellite data for crop yield estimation

Anna Mateo-Sanchis[®], Maria Piles, Jordi Muñoz-Marí, Jose E. Adsuara, Adrián Pérez-Suay, Gustau Camps-Valls

Image Processing Laboratory (IPL), Parc Científic, Universitat de València, C/ Catedrático José Beltrán, 2, 46980, Paterna, València, Spain





Agro-ecological drivers:

- MW: microwave satellites
- □ VIs: optical vegetation indices
- Climatic variables

Data collection & preprocessing

- □ Survey Data: EUROSTAT (link)
- **Products**:
 - EVI: MOD13C1, 0.05°, 16 days
 - LAI & FAPAR: CGLS, 1km, 10 days
 - SM: <u>SMOS BEC</u>, 1km, daily
 - SM & VOD: SMAP, 9km, daily [7]
 - TEMP, PRE, RAD, ET: ERA5-LAND, 9km, monthly
- Study Area: NUTS2 regions EU
- ❑ Years: 2015-2017
- Main Crops: Corn, Barley, Wheat
- Preprocessing steps:
 - **a.** Daily products temporally composited to 16 days
 - **b.** Two Land covers used to identify purely cropland pixels: ESA CCI @1km, MOD12C1 @0.05°,9km
 - C. Satellite and modeled data extracted per NUTS2 at its original spatial resolution

Results (G1)

Methodology successfully evaluated over U.S. [4]:

- □ X input = EVI & VOD
- \Box Y = yield (t/ha)
- Method: Kernel Ridge Regression [8]

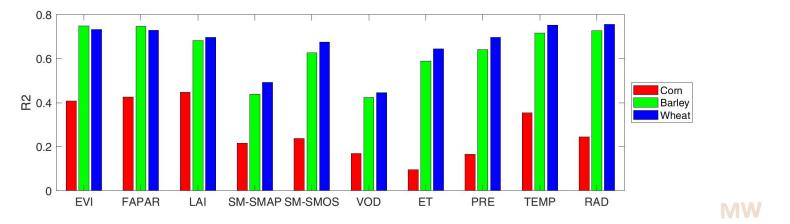
European croplands are fragmented & diverse \rightarrow need of a dedicated approach

US Corn Belt 2015 single-year <u>Homogeneous</u> landscapes			Europe 2015 single-year <u>Heterogeneous</u> landscapes			Europe 2015-2017 multi-year	
Main Crops	N	R2	Main Crops	N	R2	N	R2
Corn	363	0.9	Corn	155	0.45	403	0.5
Soybean	361	0.9	Barley	163	0.7	423	0.8
Wheat	204	0.72	Wheat	163	0.75	420	0.8

N: number of regions R2: coefficient of determination

Results (G2)

Single variable ranking in a multi-year setting



- Generally good estimates are obtained for barley and wheat, whereas models fail for corn (minority crop)
- Low spatial resolution products (SM-SMAP and VOD) fail to explain crop yield variability
- SM-SMOS (1km) improves the SM-SMAP (9km) results, obtaining better estimates than some climate variables

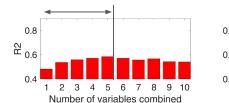
Results (G2)

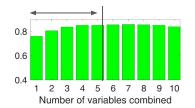
Best variable combinations

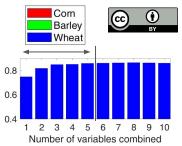
Circular Graphs Models with up to 5 variables Minimum R2 thresholds obtained: Corn: >0.55 (Left)

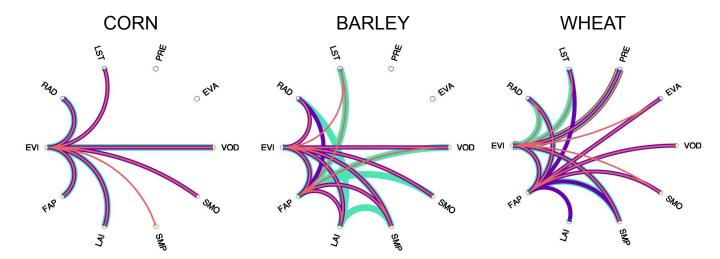
- □ Barley: >0.81 (Center)
- □ Wheat: >0.81 (Right)

5 var combined 4 var combined 3 var combined 2 var combined









Combining a greater number of variables does not imply a better result

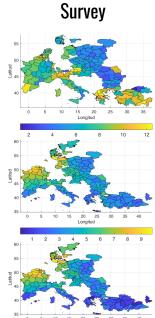
Precipitation and evaporation are not included in the best models resulting from up to 5 variable combinations

Models including vegetation (optical data), soil water (MW data) and atmospheric (climatic data) (G3) information achieve the best results

Results (G2)

Best estimates results/maps

Crop	Variables	Year	N	R2	RMSE (t/ha)
Corn	EVI, LAI TEMP, RAD SM (1km)	2015*	157	0.86	0.97
		2016	139	0.85	0.97
		2017	113	0.85	0.97
	EVI, LAI RAD SM (9km)	2015*	145	0.95	0.52
Barley		2016	127	0.91	0.46
		2017	101	0.93	0.53
	EVI Fener	2015*	145	0.97	0.47
Wheat	EVI, Fapar <mark>RAD, ET</mark> SM (9km)	2016	124	0.92	0.48
		2017	101	0.95	0.47

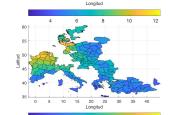


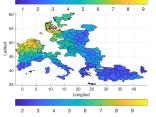
Longitu

9 10

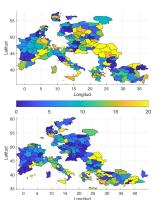
5 6

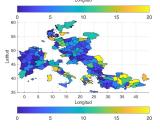






Relative error





*Year represented in the maps

Conclusions

- Region-specific crop yield models needed: homogeneous vs heterogeneous croplands
- \Box Europe crop data is limited \rightarrow A multi-year setting is necessary to ensure good training
- ML approaches allow exploiting optical, microwave and climatic data (vegetation, soil and atmosphere information) for improved crop yield estimates
- Recent microwave data at medium-scale resolution (1-9 km) can add value to present agricultural systems
- A crop type mask could allow improving the estimates, particularly for the minority crop (corn)

References

[1] D. K. Bolton, Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics, AGM (2013)

[2] J. P. Grant, et al. Comparison of SMOS and AMSR-E VOD to four MODIS-based vegetation indices, RSE (2016)

[3] D. Chaparro et al., L-band vegetation optical depth seasonal metrics for crop yield assessment, RSE (2018)

[4] A. Mateo-Sanchis et al., Synergistic integration of optical and microwave satellite data for crop yield estimation, RSE (2019)

[5] D.K. Ray, et al., Climate change has likely already affected global food production, PloS one (2019)

[6] P. Kinnunen, et al., Local food crop production can fulfil demand for less than one-third of the population, Nature Food (2020)

[7] A.G. Konings, M. Piles, et al., L-Band Vegetation Optical Depth and Effective Scattering Albedo Estimation from SMAP, RSE (2017)

[8] G. Camps-Valls, L. Bruzzone, Kernel methods for Remote Sensing Data Analysis, Wiley & Sons (2009)

Thanks!!

Learning main drivers of crop dynamics and production in Europe

Anna Mateo-Sanchis, Maria Piles, Julia Amorós-López, Jordi Muñoz-Marí, Álvaro Moreno, Gustau Camps-Valls

VNIVERSITAT IDÖVALÈNCIA Remote Sensing applications in the Biogeosciences

Image Signal Processing - ISP