Fractal reconstruction of the subgrid scales in turbulence models in applications to cloud microphysics

Emmanuel O. Akinlabi¹, Marta Wacławczyk¹, Szymon P. Malinowski¹

¹ Institute of Geophysics, Faculty of Physics, University of Warsaw, Poland

EGU General Assembly, 2020

What is the fractal interpolation technique (FIT)?

Fractal reconstruction of the subgrid scales in turbulence models in applications to cloud microphysics| 2/19

 \odot \odot

How the FIT can be applied in turbulence study?

FIT was applied by Scotti & Meneveau [Phys. Rev. Lett. 78, 86, 1997] to synthetically generate subgrid eddies in Large Eddy Simulation and to model their effect on resolved scales.

< 🗗 >

Fractal reconstruction of the subgrid scales in turbulence models in applications to cloud microphysics| 3/19

Stretching parameters.

A free parameter in the FIT method is the "stretching parameter" *d* which controls how the structures are rescaled into each other.

In Scotti & Meneveau (1997)

$$d = \pm 2^{-1/3}$$

Fractal reconstruction of the subgrid scales in turbulence models in applications to cloud microphysics| 4/19

PDF of the stretching parameter in the inertial range is a universal function !

In Akinlabi et al.

[Flow, Turbulence and Combustion 103:293-322 (2019)]

values of stretching parameters were calculated directly from numerical and experimental data of startocumulus cloud.

New result: comparison with Direct Numerical Simulation (DNS) of the forced isotropic turbulence and for wider range of *d* values.

<u>e</u>

PDF of the stretching parameter in the inertial range is a universal function !

- is universal and indepedent of *Re*
- slightly skewed
- has non-Gaussian tails

< 🗇 >

<u>_</u>

PDF of the stretching parameter along Lagrangian particle tracks.

New result: Self-similarity of the PDF of the stretching parameter along Lagrangian particle paths in LES.

< 🗗 >

Fractal reconstruction of the subgrid scales in turbulence models in applications to cloud microphysics| 7/19

Fractal reconstruction of velocity field in stratocumulus cloud

In the improved method the stretching parameters *d* are random numbers with prescribed PDF.

< 🗗 >

Fractal reconstruction of the subgrid scales in turbulence models in applications to cloud microphysics| 8/19

Tracking of Lagrangian particles in the FIT reconstructed field.

LES field

LES+FIT field

< 🗇 >

 \odot 0

| Fractal reconstruction of the subgrid scales in turbulence models in applications to cloud microphysics| 9/19

Fractal reconstruction of the subgrid scales in turbulence models in applications to cloud microphysics 10/19 < 🗗)

Tracking of Lagrangian particles in the FIT reconstructed field (LES of stratocumulus cloud)

• UNIVERS

 \odot 0

Particle equations:

 $d\mathcal{X} = (\mathcal{U}_{LES} + \mathbf{u}'_{FIT}) dt$ $d\Theta = 0$

Initial conditions:

 $\Theta = 0$ for x < L/2 $\Theta = 1$ for x > L/2

Tracking of Lagrangian particles in the FIT reconstructed field (LES of stratocumulus cloud)

 Θ properties averaged over the *x*- and *y* directions in the in-cloud region only at (a) t = 30 minutes (b) t = 60 (c) 90 minutes of simulation time.

 \odot 0

UNIVERSITY OF WARSAW

Perspectives

- Particle tracking in high-resolution LES of stratocumulus cloud with FIT
- Fractal reconstruction of the scalar fields (water vapor and potential temperature)
- Coupling with the super-droplet method of Shima et al. [Q. J. R. Meteorol.

Soc., 135, 1307-1320, 2009]

Acknowledgements:

- EU Horizon 2020 Research and Innovation Programme (Marie Sklodowska-Curie Actions), Grant Agreement No. 675675 (EA).
- matching fund from the Polish Ministry of Science and Higher Education No. 341832/PnH/2016 (MW, SPM).