

EGU Sharing Geoscience Online 4 May 2020

ON THE RAPID SPECTRAL EVOLUTION OF STEEP WAVE GROUPS

D. BARRATT, H. B. BINGHAM, P. H. TAYLOR, T. S. VAN DEN BREMER AND T. A. A. ADCOCK

Potential Flow Simulations of Steep Wave Groups Reveal Directional Energy Transfers to Oblique Components

• Directional energy transfers associated with augmented kinematics, prolonged lifespan and 'wing wave' formation—localized oblique protrusions at edge of wave group

Gaussian wavenumber spectrum with Gaussian spreading function

Ak_p	k_p	k_w	σ	Gibbs & Taylor (2005)
0.3	0.02796m ⁻¹	0.004606m ⁻¹	15°	Appl. Ocean Res., 27.

Numerical Simulations Performed with OceanWave3D Potential Flow Solver

- OceanWave3D solves fully nonlinear potential flow equations for water waves with finite difference spatial discretization & fourth-order Runge-Kutta (RK4) time-stepping
- Initial conditions based on Quasi-Determinism (QD) theory calculated 15 wave periods before focus according to linear theory and evolved for 30 wave periods with OceanWave3D

$$\eta(x, y, t) = A_L \frac{\sum_{i,j} F(k_i, \theta_j) \cos\left(k_i \cos \theta_j x + k_i \sin \theta_j y - \omega_i t + \varphi_0\right)}{\sum_{i,j} F(k_i, \theta_j)}$$

- Exact second-order correction of initial conditions based on Dalzell (1999)
- Linearisation of surface elevation to remove bound harmonics using phase-separation

Phillips 'Figure-of-Eight' Resonance Loop Describes Energy Transfers of Degenerate Quartet

• Third-order resonance predicts energy transfer between wave components for deep-water:

$$k_1 - k_2 - k_3 + k_4 = 0$$
 and $\omega_1 - \omega_2 - \omega_3 + \omega_4 = 0$

- Narrow-banded spectrum concentrates energy around spectral peak suggesting interactions resembling '*degenerate quartet*' ($k_1 = k_4$) of Phillips (1960)
- Degenerate quartet predicts energy transfer to oblique wave components at angle ±35.26°

Directional Energy Transfers of Narrow-Banded Wave Group Qualitatively Resemble Phillips Resonance Loop

- Quasi-degenerate interactions transfer energy to high-wavenumber components at angle of ±35° to spectral peak until nonlinear focus
- Broadening of spectrum by quasi-degenerate interactions facilitates non-degenerate interactions after focus, forming a high-wavenumber ridge at ±55° to spectral peak

WAVENUMBER-AMPLITUDE SPECTRA BASED ON LINEARISED SURFACE ELEVATION

Energy Transfer to High-Wavenumber Components Augments Kinematics and Loads

- Velocities and accelerations scale with powers of component angular frequency.
- Thus, increase in drag and inertial loads according to the Morison equation:

$$F = \int_{-d}^{\eta} \frac{1}{2} C_D \rho A \, u(z) |u(z)| \, dz + \int_{-d}^{\eta} C_M \rho V \frac{Du(z)}{Dt} \, dz$$

• Drag loads 24% higher for nonlinear focused event, compare with linear focused event.

Spectral Evolution Extends Lifespan of Focused Wave Event

- Nonlinear interactions counteract dispersion due to modified phase velocity of components
- Oblique energy transfers at ±35.26° associated with suppressed linear dispersion as shown by Steer et. al. (2019)

All Forms of Spectral Evolution Weakened by Finite Depth

- Directional energy transfers at ±35° almost disappear. However, energy transfers at ±55° less suppressed by depth and remain apparent at intermediate depths.
- Depth sensitivity observed within the range of 'deep water' ($5.592 > k_p d \ge 3.142$)

Conclusions

- Spectral evolution augments kinematics and extends lifespan of simulated wave events.
- *Quasi-degenerate interactions* dominate spectral evolution until nonlinear focus.
- Spectral broadening facilitates *non-degenerate interactions*, which dominate after focus.
- All forms of spectral evolution weakened by depth. However, quasi-degenerate interactions exhibit greater depth sensitivity than non-degenerate interactions.