

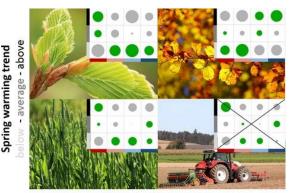
Phenological changes in Europe are still attributable to climate change induced warming

Annette Menzel^{1,2}, Ye Yuan¹, Michael Matiu³, Tim H Sparks^{4,5}, Helfried Scheifinger⁶, Regula

Gehrig⁷, and Nicole Estrella¹

¹Technical University of Munich, TUM School of Life Sciences, Freising, Germany (annette.menzel@tum.de)

²Institute for Advanced Study, Technische Universität München, Garching, Germany


³Institute for Earth Observation, Eurac Research, Bolzano, Italy

⁴Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland

⁵Museum of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK

⁶Klima, Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Austria

⁷Federal Office of Meteorology and Climatology MeteoSwiss, Switzerland

Phenological response

sign. advance - advance - delay - sign. delay

Previous study of 2006 needed an update

Wild species in spring and summer matched the warming pattern in Europe during 1971-2000 but not farming activities and autumnal leaf coloring. But with insufficient winter chilling, is phenology still mirroring climate change?

European phenological response to climate change matches the warming pattern

ANNETTE MENZEL, TIM H. SPARKS, NICOLE ESTRELLA, ELISABETH KOCH, ANTO AASA, REIN AHAS, KERSTIN ALM-KÜBLER, PETER BISSOLLI, OL'GA BRASLAVSKÁ, AGRITA BRIEDE, FRANK M. CHMIELEWSKI, ZALIKA CREPINSEK, YANNICK CURNEL, ÅSLÖG DAHL, CLAUDIO DEFILA, ALISON DONNELLY, YOLANDA FILELLA, KATARZYNA JATCZAK, FINN MÅGE, ANTONIO MESTRE, ØYVIND NORDLI, JOSEP PEÑUELAS, PENTTI PIRINEN, VIERA REMIŠOVÁ, HELFRIED SCHEIFINGER, MARTIN STRIZ, ANDREJA SUSNIK, ARNOLD J. H. VAN VLIET, FRANS-EMIL WIELGOLASKI, SUSANNE ZACH, ANA ZUST ... See fewer authors

First published:21 August 2006 | https://doi.org/10.1111/j.1365-2486.2006.01193.x | Citations: 1,442

Volume 12, Issue 10 October 2006 Pages 1969-1976

Updated study of 2020

There is still a significant and attributable phenological change pattern in Europe

<u>Volume 26, Issue 4</u> April 2020 Pages 2599-2612

Materials and Methods

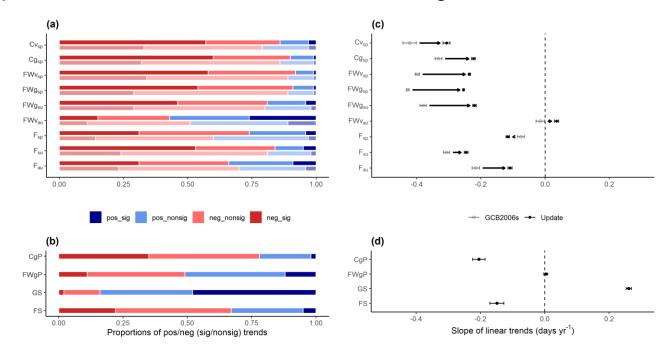
Complete phenological dataset of Germany, Austria and Switzerland (1951-2018, ~97.000 times series, corresponding to 96.3% of PEP725 data), categorized in nine phenologically relevant clusters

TABLE 1 Statistics of the phenological data set with 30+ year series in the period 1951-2018 ending ≥2000

	Observations	Series	Species	Phases	Stations
Germany	4,085,218	93,171	53	22	1,628
Austria	51,951	1,340	37	20	53
Switzerland	115,098	2,485	21	8	127

TABLE 2 Categorization of phenophases in Update comprising nine clusters and four phenological periods/seasons as compared to GCB2006

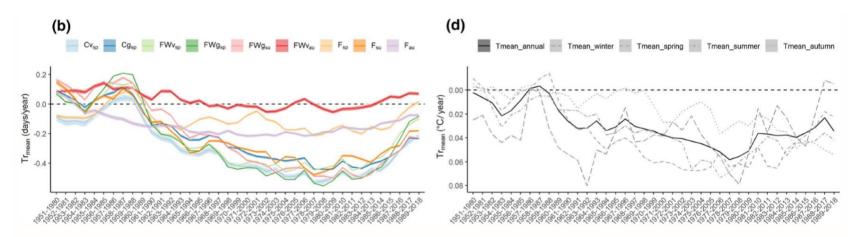
phenogr	oups	Update	-nine clusters	Update	e—four periods/seasons	
b0	Farmers' activities	F _{sp}	Earmer <u>spring</u> Sowing of spring cereals/crops (b0) and the first follow-up BBCH scale (germination, leaf development, part of b1 GCB2006)		$\label{eq:energy} \begin{split} &\underline{F}arming \ \underline{S}eason \\ &\overline{T}ime \ period \ of \ farmers' \ activities \ from \\ &earliest \ phenophase \ in \ F_{sp} \ to \ the \ latest \\ &phenophase \ in \ F_{au} \ available \ at \ each \end{split}$	
		F _{au}	Earmer <u>au</u> tumn Sowing of autumn cereals (b0) and the first follow-up BBCH scale before winter (germination, leaf development, part of b1 GCB2006)		station	
b1 Leaf unfolding, flowering		Cv _{sp}				
		Cg _{sp}	Crop generative <u>spring</u> All BBCH macrostages from 5 (inflorescence emergence, heading) to 6 (flowering, anthesis) in agricultural crops			
20-05	5-08	(c)	species vegetative spring rom 0 (bud sprouting), 1 (shoot development) in ht species			



Menzel et al. 2020, GCB

Main results

More (significantly) advancing trends (~90% and ~60% sign.) for spring and summer phases with decreased mean trend strength



Main results

Maximum of phenological advance and warming during 1979-2008

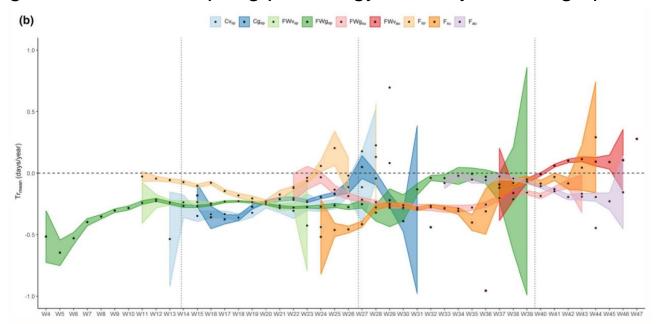
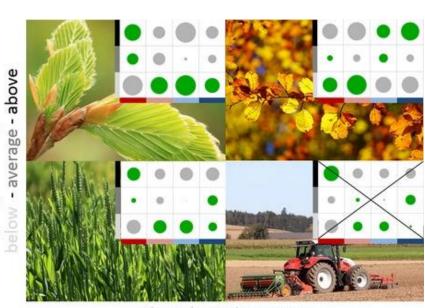


FIGURE 2 Mean slopes of linear trends (Tr_{mean}) calculated for all 15+ year phenological series in respective 30 year moving window blocks within 1951–2018 for the Update data set. Shading indicates 95% confidence intervals in all subplots. Phenophase groups according to (a) GCB2006, (b) nine clusters, and (c) four periods as defined in Table 2, (d) mean slopes of annual and seasonal mean temperature trends with inverted y-axis for all sites and time blocks

Main results

Strongest advances in spring phenology for early flowering species and/or warm sites

FIGURE 3 Mean slopes of linear trends per week of the year (W4–W47) calculated for all series in Update. Phenophase groups according to (a) GCB2006, and (b) nine clusters. Mean values indicated by solid black circles, vertical division at 90 day intervals. Shading indicates 95% confidence intervals (CI). CIs exceeding the y-axis range are not shown by default



Take home message

- There is still a significant and attributable phenological change pattern in Europe
- Attention to inherent variability of trends with traits/species groups, season and time

For more details please see the following publication: Menzel A, Yuan Y, Matiu M, et al. Climate change fingerprints in recent European plant phenology. *Glob Change Biol.* 2020;26:2599–2612.

https://doi.org/10.1111/gcb.15000

Spring warming trend

Phenological response

sign. advance - advance - delay - sign. delay

