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• Conclusions and references
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Motivation
• There’s a lot of talk about “tipping points.”
• It sounds threatening, like falling off a cliff: that’s why we care!
• But what are they, and what do we know about them?
• Here’s a disambiguation page (cf. Wikipedia), first.
• Sociology: “the moment of critical mass, the threshold, the boiling 

point” (Gladwell, 2000); a previously rare phenomenon becomes 
rapidly and dramatically more common.

• Physics: the point at which a system changes from a stable 
equilibrium into a new, qualitatively dissimilar equilibrium (throwing a 
switch, tilting a plank, boiling water, etc.).

• Climatology: “A climate tipping point is a somewhat ill-defined 
concept […]”— so we’ll try to actually define it better. 

M. Gladwell (2000) The Tipping Point: How Little Things Can Make a Big Difference.
T. M. Lenton et al. (2008) Tipping elements in the Earth's climate system, PNAS, v. 105.

• Catastrophe theory: branch of bifurcation theory in the study of 
dynamical systems; here, a tipping point is “a parameter value 
at which the set of equilibria abruptly change.” è Let’s see!
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Dynamical systems and predictability 

•  The initial-value problem à numerical weather prediction (NWP)
 — easiest! 

•  The asymptotic problem à long-term climate 
 — a little harder

•  The intermediate problem à low-frequency variability (LFV) – 
– multiple equilibria, long-periodic oscillations, intermittency,
   slow transients, “tipping points”
  — hardest!!

Paraphrasing John von Neumann, in
R. L. Pfeffer (ed.), Dynamics of Climate (Pergamon, 1960)

 now re-edited as an Elsevier E-book
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Composite spectrum of climate variability
Standard treatement of frequency bands:

1. Higher frequencies – white (or ‘‘warm-colored’’) noise
2. Lower frequencies – slow (‘‘adiabatic’’) evolution of parameters

From Ghil (2001, EGEC), after Mitchell* (1976)
* ‘‘No known source of deterministic internal variability’’
** 27 years – Brier (1968, Rev. Geophys.)



Climate Change: CO2 & Temp. Observations

Courtesy of 
Henk Dijkstra 

Exponential increase 
in CO2 should result
in linear increase in
temperatures.
Why is that not so?



Unfortunately, thingsUnfortunately, things
arenaren’’tt  all all that easy!that easy!

Ghil, M., 2002: Natural climate variability, 
in Encyclopedia of Global Environmental 
Change, T. Munn  (Ed.), Vol. 1, Wiley

What to do?

Try to achieve better
interpretation of, and
agreement between,
models …
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Temperatures rise: 
•  What about impacts? 
•  How to adapt? 

Source : IPCC (2007), 


AR4, WGI, SPM  

The answer, my friend, 
is blowing in the wind, 
i.e., it depends on the  
accuracy and reliability 
of the forecast … 



Climate	
  and	
  Its	
  Sensi&vity	
  
Let’s say CO2 doubles:

How will “climate” change?

 
    Ghil (in Encycl. Global Environmental  
    Change, 2002)

2. Climate is purely periodic;
    if so, mean temperature will
    (maybe) shift gradually to its
    new equilibrium value. 
    But how will the period, amplitude
    and phase of the limit cycle change?

1. Climate is in stable equilibrium
    (fixed point); if so, mean temperature
    will just shift gradually to its new 
    equilibrium value.

3. And how about some “real stuff” 
    now: chaotic + random?
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Stable!

Stable!

Unstable!

1-D EBM: Bifurcation diagram 

Climate sensitivity:!

at 

(1K per % of     )!



Distance to “tipping points”? 

α(T ;κ) = c1 + c2
1− tanh [κ (T − Tc)]

2
.

c Ṫ = µ Q0 (1− α(T )) σ T 4
�
1−m tanh

�
(T/T0)6

��
Slightly modified 0-D EBM (Zaliapin & Ghil, NPG, 2010)!
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Tc is the ice-margin temperature,
while κ is an extra “Budyko-vs.-Sellers” parameter

0 0.5 1 1.5 2 2.5
100

150

200

250

300

350

400

Fractional insolation change, µ 

Te
m

pe
ra

tu
re

, T

current Earth state 

0 0.5 1 1.5 2 2.5
100

150

200

250

300

350

400

!

Te
m

pe
ra

tu
re

, T

=0.01 

=0.05 =0.1 

=1 



Time-dependent forcing
u Much of the theoretical work on the intrinsic variability of the climate 

system has been done with time-independent forcing and coefficients.
u Mathematically, this relied on autonomous dynamical systems (DDS).
u To address the changes in time of the system’s overall behavior — and 

not just of its mean properties — an important step is to examine time-
dependent forcing and coefficients. 

u The proper framework for doing so is the theory of non-autonomous and 
random dynamical systems (NDS and RDS).

u Here is a “super-toy” introduction to pullback attractors: what are they?
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The sources of nonautonomous dynamics

Physically open vs. closed systems: fluxes of mass, momentum & energy between the
system & its surroundings are present or not.

The mathematical framework of nonautonomous dynamical systems (NDSs) is
appropriate for physically open ones:
− skew-product flows (G. Sell)

ẋ = f (x, q), q̇ = g(q), x ∈ Rd, q ∈ Rn, with q the driving force for x.
− pullback (Flandoli, L. Arnold) or snapshot (C. Grebogi & E. Ott) attractors

dXt = f (X, q)dt + σ(X)dWt,
where Wt is a Brownian motion in Rd and dt ∼ (dW)2.

More generally, studying explicit time dependence in forcing or coefficients requires NDSs.

The term nonautonomous is used both for the deterministic case and for a unified
perspective on the deterministic & the random case.

The commonality between the two cases is (i) the independence & (ii) the semi-group
property of the driving force, whether q(t) or Wt.

Likewise, pullback attractor (PBA) is used both for the deterministic & the random case,
while in the latter case uses more specifically the phrase random attractor (RA).

Michael Ghil (ENS & UCLA) Autonomous DDSs: Bifurcations & EBMs 9 October 2019 2 / 2



RDS, III- Random attractors (RAs)
A random attractor A(ω) is both invariant and “pullback" attracting:

(a) Invariant: ϕ(t , ω)A(ω) = A(θ(t)ω).

(b) Attracting: ∀B ⊂ X , limt→∞ dist(ϕ(t , θ(−t)ω)B,A(ω)) = 0 a.s.

Michael Ghil Climate Change and Climate Sensitivity



Tipping Points – A Classification(*)

Ø B-Tipping or Bifurcation-due tipping
– slow change in a parameter leads to the system’s passage through a

classical bifurcation
Ø N-Tipping or Noise-induced tipping

– random fluctuations lead to the system’s crossing an attractor 
basin boundary

Ø R-Tipping or Rate-induced tipping
– rapid changes lead to the system’s losing track of a slow change in

its attractors.

N.B. All three types of tipping involve an open system. 
We start with closed systems & study their bifurcation structure. 
Then we proceed to open systems & see how that changes things.

(*) Ashwin et al. (PTRSA, 20012)
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Sample measures supported by the R.A.

We compute the probability measure on the R.A. at some fixed time t ,
and for a fixed realization ω. We show a “projection”,

∫
µω(x , y , z)dy ,

with multiplicative noise: dxi=Lorenz(x1, x2, x3)dt + α xidWt ; i ∈ {1, 2, 3}.
10 million of initial points have been used for this picture!

Michael Ghil Climate Change and Climate Sensitivity
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A day in the life of the Lorenz (1963) model’s random attractor, or LORA for short;

see SI in Chekroun, Simonnet & Ghil (2011, Physica D) or 
Vimeo movie: https://vimeo.com/240039610



The dynamics on a deterministic 
attractor can be compactly 
described as the limit of a semi-
flow on a branched manifold (BM). 
The topological description of the 
BM or template encodes the 
invariant structure of the attractor 
in phase space. Reconstructing a 
BM from data amounts to (1) 
approximating a cloud of points in 
phase space by Euclidean closed 
sets; and (2) forming a cell 
complex in the sense defined in 
algebraic topology. The BM can be 
identified through the homology 
groups and the orientability chains 
associated to the cell complex 
(Sciamarella & Mindlin (PRL, 
1999; PRE, 20010).

This work examines the 
topological structure of the 
snapshots that 
approximate the global 
random attractor 
associated with the 
stochastically perturbed 
Lorenz (1963) model. It is 
shown that — within the 
framework of random 
dynamical systems — the 
BM identification approach 
used to characterize the 
topological structure of 
deterministic chaotic flows 
from (noisy) time series 
can be extended to 
nonlinear noise-driven 
systems. 

State-space topology
Joint work with G. Charó, M. Chekroun & D. Sciamarella



Snapshot at time t = 40.09 

Snapshot at time t = 40.27 



Physically closed system, modeled  
mathematically as autonomous "
system: neither deterministic 
(anthropogenic) nor random 
(natural) forcing."

The attractor is strange, but still 
fixed in time ~ “irrational” number. "

Climate sensitivity ~ change in the 
average value (first moment) of the 
coordinates (x, y, z) as a parameter 
λ changes."



The classical view of dynamical 
systems theory is:"

positive Lyapunov exponent  "
    trajectories diverge exponentially"

But the presence of multiple "
    regimes implies a much "
    more structured behavior "
    in phase space"

L. A. Smith (Encycl. Atmos. Sci., 2003)"

Still, the probability distribution  "
    function (pdf), when calculated "
    forward in time, is pretty "
    smeared out 



Physically open system, modeled 
mathematically as non-autonomous "
system: allows for deterministic 
(anthropogenic) as well as random 
(natural) forcing."

The attractor is “pullback” and 
evolves in time ~ “imaginary” or  "
                         “complex” number. "

Climate sensitivity ~ change in the 
statistical properties (first and 
higher-order moments) of the 
attractor as one or more  
parameters (λ, μ, …) change."

Ghil (Encyclopedia of Atmospheric 
!Sciences, 2nd ed., 2012)"



Lorenz (JAS, 1963)"
Climate is deterministic and autonomous,"
     but highly nonlinear."
Trajectories diverge exponentially, "
     forward asymptotic PDF is multimodal."

Hasselmann (Tellus, 1976)"
Climate is stochastic and noise-driven,"
     but quite linear."
Trajectories decay back to the mean, "
     forward asymptotic PDF is unimodal."
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Concluding remarks
What do we know?
• There are great uncertainties in climate sensitivity & prediction; some are irreducible.
• The climate system is open, & affected by time-dependent forcing, 

both deterministic & stochastic.
• There is a nice general framework for including time-dependent forcing: NDS + RDS.

What do we know less well?
• How does the climate system really work?
• Smooth & rough dependence: Tipping points, crises? 
• How do the latter affect the intrinsic variability: higher moments, ExEv’s?

What to do?
• Work the model hierarchy, and the observations!
• Explore further non-autonomous and randomly driven models,

and their tipping points!
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Pullback, Snapshot & Random Attractors
The framework of physically open and mathematically

non-autonomous dynamical systems 
Ø skew-product flows (G. Sell) – in deterministic systems, referred to usually as 

non-autonomous
Ø mathematical literature – pullback attractors (F. Flandoli, L. Arnold)
Ø physical literature – snapshot attractors (C. Grebogi & E. Ott)
N.B. When the forcing is (also) stochastic, one talks of random attractors

Some General References
L. Arnold, Random Dynamical Systems, Springer, 1998.
H. Crauel & F. Flandoli, Attractors for random dynamical systems. Tech. Rep. 148

Scuola Normale Superiore, Pisa, 1992. 
G. Drótos, T. Bódai, & T. Tél, Probabilistic concepts in a changing climate: 

A snapshot attractor picture. J. Climate, 28, 3275–3288, 2015.
Ghil, M., M.D. Chekroun, & E. Simonnet, 2008: Climate dynamics and fluid mechanics: 

Natural variability and related uncertainties, Physica D, 237, 2111–2126.
F. J. Romeiras, C. Grebogi, & E. Ott, Multifractal properties of snapshot attractors

of random maps Phys. Rev. A, 41, 784–799 (1990). 
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Math. Soc., 127, 241–283, 1967. 
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Applications to the climate sciences
Ø pullback and random attractors (M. Ghil & associates)
Ø snapshot attractors (T. Tél & associates)



Nature is not deterministic or stochastic:

It depends on what we can, need & want to know 
— more or less detail, with greater or lesser accuracy —

larger scales more accurately, 
smaller scales less so

But we need both, deterministic and stochastic descriptions.
Knowing how to combine them is necessary, as well as FUN!




