Solar Cycle Variability of

Simple and Complex

Active Regions

S. Nikbakhsh¹, E.I. Tanskanen²

¹ School of Electrical Engineering, Aalto University, Finland ² Sociankylä Geophysical Observatory, Finland

lav 2020

Solar Active Region

- Appear in photosphere
- Location of strong magnetic field
- Frequently host various solar activity such as flares and CMEs

AR 12192 October 2014

Credit: SDO/NASA

Magnetogram Data

- A magnetograph detects the strength and location of the magnetic field
- Applies Zeeman effect
- Blue/red color presents positive/negative polarity

AR 12192 October 2014

Credit: SDO/NASA

Magnetic Classification of ARs

 Mount Wilson Classification (Hale et al. 1919): α, β, βγ, βγδ, ...

• Zurich Classification (Waldmeier 1947): I, II, III, ...

 McIntosh Classification (McIntosh 1990): Axx, Cro, Eac, ...

Credit: SDO/NASA

Mount Wilson Classification

- Classifies ARs into 5 major groups
- Class symbols:
 α, β, βγ, γ, δ
- Each AR may be classified with one or a combination of two major classes

Our Data

- Ground-based
- Solar Observing Optical Network (SOON)
- January 1996 to December 2018
- SOON reports daily details of ARs on the visible solar disk, including:
 - Heliographic latitude/longitude
 - Mount Wilson Classification
 - Number of spot in each AR

SOON telescope

Holloman AFB, New Mexico, USA

The Evolution of Magnetic Complexity

The magnetic complexity of an AR might change during its lifetime

Hale & Nicholson (1938):

- Average magnetic class was used
- No correlation with sunspot cycle

Jaeggli & Norton (2016):

- Magnetic complexity was selected when an AR achieved its maximum area.
- Magnetic complexity of ARs varied with the solar cycle

Year	α	a,¢	af	β	ßp	βf	βγ	۲	Unclassified
1915	10	20	5	23	30	5	5	2	1
1916	16	17	4	20	31	8	Ă I	ō	5
917	11	20	4	21	32	9	3	õ	6
1918	17	20	3	22	27	é	2	õ	š
1919	19	20	4	17	28	ź.	ŝ	ĩ	
1920	13	21	6	19	29	7	i i	2	Ś
1921	10	30	Ă	23	24	7	2	ĩ	18
1922	17	21	ŝ	23	25	à	õ		
1923	3	21	6	15	49	6	ŏ	ő	11
1924	9	21	i i	27	27	š	2	2	.,
1915-1924	14	20	4	21	29	8		1	7

Our Methods

- We used the daily number of each magnetic complexity
- Similar to the Sunspot number calculation
- Easy to compare the results with daily variation of the Sunspot Number
- It includes information about lifetime of each AR's magnetic complexity

- The total daily count of ARs was 33,496
- A Majority of ARs were and aregions
- βδ, γ and γδ have only total occurrence rate of 0.51%, so we excluded them from the further analysis

Complexity class	Count [number]	Relative abundance [%]	
α	10296	30.73	
β	19284	57.57	
βγ	2919	8.71	
βγδ	997	2.97	
βδ	166	0.49	
γ	4	0.01	
γδ	5	0.01	

We divided ARs into two groups

Simple active regions (SARs): α and β

Complex active regions (CARs): βγ and βγδ

Complexity class	Peak SARs Cycle 23 [Number]	Peak SARs Cycle 24 [Number]	Rate of change [%]
SARs	11523	5607	51
Complexity class	Peak SARs Cycle 23 [Number]	Peak SARs Cycle 24 [Number]	Rate of change [%]
CARs	1476	1258	15

Conclusion

- B regions and SARs closely follow NOAA sunspot number.
- SARs reach their maximum value during the first peak of the cycle, whereas CARs attain their maximum later and during the second peak
- Abundance of CARs is almost equal in cycle 23 and 24 for the period of 2 years
 before and after their maximum value
- We interpret the behavior of SARs & CARs in terms of the competition between the two different solar dynamo processes: large scale and small scale dynamos
- Latitudinal distribution of SARs and CARs were almost the same during both cycles, suggesting that they could originated from the same origin within the solar interior.