Phosphorus chemical changes under soils over a period of agricultural intensification

Andrew Tweedie

Philip Haygarth², Anthony Edwards³, Allan Lilly¹, Nikki Baggaley¹, Marc Stutter¹

¹The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH

²Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ

³Scotland's Rural College (SRUC), Ferguson Building, Craibstone Estate, Aberdeen AB21 9YA

- Aim
 - To compare soil phosphorus forms in working farm field sites, at 2 timepoints spanning a period of agricultural intensification

• Hypothesis

• Phosphorus forms and availability in mixed use (arable and grazed) agricultural soil have changed over a period of 50 to 80 years of agricultural intensification

Method

- 35 field sites on working farms previously used for field experiments at times between 1951-1981 (timepoint 'T0') were identified and resampled in 2017 (timepoint 'T1')
- Various chemical extractions were performed, investigating forms of phosphorus, and also carbon and nitrogen.
- This work builds on published work by Lilly *et al.* 2020 (reference provided final slide)

Box: 1

Box: 2

Background: Phosphorus cycling in agriculture

- P occurs in many forms in the soil, orthophosphate (HPO₄²⁻, H2PO₄¹⁻) is the major plant available form, but P cycles through various forms in the soil, of varying recalcitrance.
- Intensive agriculture is an 'unclosed loop'
 - A finite, off-site mined resource (rock phosphate)
 - Inefficient application in excess, to allow for chemical and microbial sequestration away from the target plant
 - A potential build-up of 'Legacy P' which represents a possible resource, but also a long term hazard.
 - Negative impacts of losses to water courses, both at application time and also of Legacy P build-up over longer time periods.

Soil Organic Matter (SOM): linking Carbon and Phosphorus cycles

- SOM levels have reduced in intensively managed soils in many areas, indicated by carbon content of the soil
- Soil organic matter contains P ('organic P') and C is energy in microbial P acquisition
- How might P availability and SOM have changed, as agriculture has intensified?

A simplified overview of the phosphorus cycle in managed agricultural systems

Box: 3

Modified from: Haygarth PM, Bardgett RD & Condron LM. 2013. Nitrogen and phosphorus cycles and their management. *Soil Conditions and Plant Growth*: 132–159.

Box: 4

Method: Sample Description

History of the sites

- 35 original experimental field sites on working farms in NE Scotland
- Originally sampled between 1951 and 1981 for field trials determining recommended levels of phosphorus
- All sites in continuous mixed agriculture until resampling in 2017.

Soil Preparation Storage / Parameters

- Original field sampling 'W-protocol' also used in resampling.
- Soil air-dried at 30°C, stored in dark, dry atmosphere: all in same location
- Resamples were dried, sieved and milled to same protocol as original samples
- All analyses conducted simultaneously on both T0 and T1 samples

Method: Extractions and Analysis

All extractions and analyses were conducted simultaneously on both T0 and T1 samples

Water Extraction (labile / plant available P forms) + Skalar colourmetric continuous flow analysis: • P (P_{inorganic} / P_{organic}) / DOC / N_{total} / NH₄ / NO₃ / N_{organic}

Acid Ammonium Oxalate Extract (particularly for moderately sorbed P forms on mineral surfaces and related cations) + ICP-OES analysis (Inductively coupled plasma atomic emission spectroscopy) • P / Al / Fe / P saturation (calc)

NaOH-EDTA Extract (particularly for organic P forms) + ICP-OES analysis: P / Al / Fe / Mn + Skalar colourmetric analysis: P (P_{inorganic} / P_{organic})

Additionally:

and lability of phosphorus forms decreasing

Extractant strength

increasing

- 5 sites (10 samples) were chosen to represent the span of the T0 time-range and were further analysed for detailed organic P forms
- For these selected sites
 - NaOH-EDTA extracts were further measured for ³¹P Nuclear Magnetic Resonance Spectroscopy (³¹P NMR) for detailed organic P speciation
 - Total P by NaOH-Fusion was measured to allow calculation of absolute values of the ³¹P NMR data

NATIONAL

Results: Means of phosphorus forms between Timepoints

2000

1500

E 1000

500

p-value = non-sig

T:

TO

Timepoir

(0.52)

Labile phosphorus changes between timepoints

- Mean water extracted inorganic P increased from T0 to T1 (p=<0.01).
- However Modified Morgan's P (from Lilly et al. 2020) reduced.

Occluded phosphorus changes between timepoints

No statistically significant changes in phosphorus extracted by acid ammonium oxalate or NaOH-EDTA were detected

Organic phosphorus changes between timepoints

• Water extracted organic P decreased between T0 and T1 (p=0.001), the amount extracted by NaOH-EDTA showed a small decrease that was not statistically significant

Cation changes between timepoints

- No statistically significant changes in Al or Fe extracted by acid ammonium oxalate or NaOH-EDTA were detected
- However oxalate P_{saturation} (ratio) was found in have increased statistically significantly (p=<0.01)

Water extract and Skalar - PO4-P (mg/kg DM) Error bars depicting mean and 95% confidence interva

NaOH-EDTA extract and Skalar - PO4-P (mg/kg DM)

Error bars depicting mean and 95% confidence interval

Extraction and Analysis Methods	Analyte (mg/kg)	T0 Mean (SE)	T1 Mean (SE)	T-test (p-value)
Water extract and Skalar	P _{total}	6.5 (0.49)	8.7 (0.84)	<0.05 (0.034)
	P _{inorganic}	5.16 (0.54)	8.39 (0.91)	<0.01 (0.002)
	P _{organic}	1.38 (0.17)	0.54 (0.12)	<0.001 (0.001)
Ammonium Oxalate extract and ICP-OES	P _{total}	953.79 (69.85)	1015.5 (67.68)	non-sig (0.519)
	AI	5676.01 (467.71)	4979.52 (411.81)	non-sig (0.272)
	Fe	9345.11 (834.13)	7820.59 (514.41)	non-sig (0.165)
	P _{saturation} (ratio)	0.09 (0.01)	0.11 (0.01)	<0.01 (0.006)
NaOH-EDTA extract and ICP-OES	P _{total}	1017.42 (61.53)	959.27 (53.55)	non-sig (0.531)
	AI	4613.07 (330.95)	3840.39 (296.84)	non-sig (0.095)
	Fe	393.88 (41.61)	446.76 (51.73)	non-sig (0.453)
NaOH-EDTA extract and Skalar	P _{total}	864.73 (50.99)	947.1 (49.8)	non-sig (0.221)
	P _{inorganic}	505.85 (43.09)	615.74 (46.84)	non-sig (0.087)
	P _{organic}	358.88 (18.34)	331.36 (13.99)	non-sig (0.299)
Modified Morgan's (from Lilly et al. 2020)	P _{total}	46.48 (3.31)	36.97 (3.12)	non-sig (0.067)

Box: 8

Box: 7

Results: Carbon, Nitrogen

- Total carbon and nitrogen means were found not to have changed statically significantly between T0 and T1 by Lilly *et al.* 2020
- Water extraction in the current study showed statistically significant changes in Dissolved Organic Carbon (DOC) and nitrogen forms
- It is possible that the difference seen could be attributed to storage induced changes in the TO samples

Table: Water extract C and N mean results by timepoint

Extraction and Analysis Method	Analyte	T0 Mean (SE)	T1 Mean (SE)	T-test (p-value)
Water extract and Skalar	Dissolved Organic Carbon (mg/kg)	1187.49 (55.62)	211.79 (13.33)	<0.001
	N total (mg/kg)	75.9 (4.2)	40.28 (3.3)	<0.001
	NH4-N	29.38 (2.46)	6.74 (1.13)	<0.001
	NO3-N	4.14 (0.59)	5.9 (1.41)	non-sig (0.273)
	Organic-N	42.38 (2)	27.63 (1.54)	<0.001

Results: Principal Components Analysis (PCA) per Timepoint

- PCA ordination was conducted separately at both timepoints to help understand patterns in variance within the dataset
- Similar groupings are seen at both timepoints when PC1 and PC2 are visualised
- Labile P group
 - P by H₂O extraction
 - P_{saturation} ratio (ammonium oxalate extraction)
- Occluded P group
 - P by Ammonium Oxalate and NaOH-EDTA extraction
 - Mn by Ammonium Oxalate
- Carbon, Nitrogen, Cations group
- Water extracted organic-P
 - P_{organic} by H₂O extraction

Results: ³¹P Nuclear Magnetic Spectroscopy for organic phosphorus forms

- ³¹P NMR was conducted on NaOH-EDTA extractions of 5 sites (10 samples), to elucidate detailed organic P forms
- Organic P quantities extracted by NaOH-EDTA showed a small decrease that was not statistically significant, although water extract showed a significant decrease
- Initial analysis of ³¹P NMR data indicates differences in αglycero-phosphate and pyrophosphate between timepoints, but these are not yet statistically tested

Inorganic PO₄

methylene diphosphonic acid (MDPA) – analytical standard

Group Name	T0: 1978		T1: 2017	
	Peak ppm	Peak area	Peak ppm	Peak area
methylene diphosphonic acid (MDPA)	16.8	1	16.8	1
Inorganic PO ₄	5.55	4.61	5.55	5.49
RNA mono P	5.27	0.36	5.27	0.6
α glycero- phosphate			4.39	0.89
myo-IHP	4.39	0.58	4.03	0.99
monoester group	4.03	0.72	3.87	0.49
β glycero- phosphate	3.87	0.39	3.55	0.56
scyllo-IHP	3.55	0.44		
pyrophosphate			-4.92	0.12

pyrophosphate

Discussion

- Hypothesis
 - Phosphorus forms and availability in mixed use (arable and grazed) agricultural soil have changed over a period of 50 to 80 years of agricultural intensification
- Discussion
 - Water extractable inorganic P was found to change it increased from T0 to T1 (p=<0.01)
 - Modified Morgan's P (Scotland's recommended agronomic P index) decreased slightly as measured by Lilly *et al. 2020*, who attribute this to more stringent P fertiliser application guidelines over the last 30 years
 - Moderately mineral surface-bound P (ammonium oxalate extraction) and strong alkaline extracted P (NaOH-EDTA extraction) did not change between the timepoints
 - However oxalate P_{saturation} (ratio) was found in have increased statistically significantly (p=<0.01) which may indicate an increased risk of leaching of stored P in the soil
 - Some differences in organic P forms are indicated in the ³¹P NMR data
 - A possible factor influencing the T0 results, including P and also the DOC and N changes in water extraction results between timepoints, is changes occurring during the long period of storage

Further work

- Complete ³¹P NMR data analysis
- Collation of literature relating to changes in air dried soil during storage

Acknowledgments

Co-authors

Prof Philip Haygarth Prof Anthony Edwards Dr Allan Lilly Dr Nikki Baggaley Prof Marc Stutter

James Hutton Institute Staff

Dr Samia Richards Helen Watson Dr Renate Wendler Gillian Green Fiona Sturgeon

Dundee University (NMR) Gina MacKay and team

Funders

Thank you to my coauthors, funders and for your interest.

RESEARCH PAPER

e inagement 🖓 🕮 WILEY

Changes in the carbon concentrations and other soil properties of some Scottish agricultural soils: Evidence from a resampling campaign

Key reference

Allan Lilly¹ | Nikki J. Baggaley¹ | Anthony C. Edwards²

The work presented here builds upon the initial work published by Lilly et al. 2019: Lilly, A., Baggaley, N.J. & Edwards, A.C. 2020. **Changes in the carbon concentrations and other soil properties of some Scottish agricultural soils : Evidence from a resampling campaign.** Soil Use and Management, 36, 299–307, (At: https://onlinelibrary.wiley.com/doi/abs/10.1111/sum.12562.)