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Introduction
● High speed solar wind streams (HSS) are streams emanating from coronal holes with 

significantly higher solar wind (SW) velocity than the quiet time SW. Such streams 
overtake the upstream slower solar wind, creating a region of enhanced proton 
density and interplanetary magnetic field (IMF) strength that can give rise to severe 
and long lasting geomagnetic storms. Sometime these streams are recurring as the 
coronal hole rotates with the Sun, and create co-rotating interaction regions (CIR) 
against the slower solar wind stream.

● In our study we will be looking at the ionospheric currents response to HSS/CIR 
related geomagnetic storms – both the temporal and spatial evolution of the current 
system – and how different properties of the HSS/CIR can impact the current system.



  

Method to detect HSS geomagnetic 
storms

● The geomagnetic storms were detected by applying an algorithm to the Dst index (Partamies et 
al. 2013):
– Storm start when the Dst first crosses to < -15 nT
– Abrupt decrease of Dst, dDst/dt < -2 nT/hr
– Minimum Dst ≤ -50 nT
– End of recovery phase when Dst crosses to > -15 nT after reaching Dst minimum

● We then cross-referenced all the detected storms with Grandin et al. (2019) list of HSS events 
to find all the HSS related geomagnetic storms.

● From 2009-2018 we detected 51 HSS related geomagnetic storms
– We have full data coverage for 33/51 storms, and will be using these 33 storms for the remaining of the 

study



  

Distribution of the HSS related geomagnetic storms with data coverage. Red line shows the main phase of the storm and 
blue line the recovery phase. Event #6 and #29 are compound events – reaching a local Dst minimum < -50 nT before 
almost recovering back to >-15 nT, then reaching a second more critical Dst minimum afterwards – hence the artificially long 
main phase duration. These events still fit nicely into our study as the first Dst minimum is < -50 nT and the second minimum 
is in both cases more than 60 hours after the first.



  

Data – AMPERE and SuperMAG
● We will be using data from the Active Magnetosphere and Planetary Electrodynamic Response Experiment (AMPERE) 

and the SuperMAG collaboration to get a view of both the field aligned and horizontal currents in the northern 
hemisphere

● AMPERE

– > 66 satellites in 6 orbit planes at 780 km altitude

– From the AMPERE we will get the radial current density from northern hemisphere at 10 minutes resolution

● SuperMAG – Collaboration of magnetometer stations

– > 140 stations above 40° MLAT

– From the SuperMAG we will find equivalent horizontal currents

● OMNIWeb

– We will be using solar wind data from OMNIWeb mapped to the bow shock to relate the interplanetary conditions 
to the observed current systems



  

● Figure to the right shows AMPERE and SuperMAG 
data ten hours into one of the geomagnetic storms in 
our study. Color plot shows the upward and downward 
field aligned current (FAC) density and the vectors 
show fitted ground magnetic field perturbation from 
SuperMAG rotated by 90° to indicate behavior of the 
horizontal currents.

● Red circles are Iridium satellites used to derive the 
AMPERE radial current density – here shown for the 
position at exactly 10:50 UT. Dashed lines show the 
six trajectory planes of the satellites. Within ten 
minutes each satellite travels the separation distance 
between itself and the next satellite ahead, therefore 
measurements for each 10-minute data product is 
collected along the entire trajectory line.

● Red stars are the location of magnetometer stations 
used in the SuperMAG collaboration above 40 MLat.



  

Superposed epoch analysis
● The analysis in this study is done using superposed epoch 

analysis of the 33 events with full data coverage

● Zero epoch = the time Dst crosses -15 nT (storm start)

From the superposed epoch analysis we will be outlining the median value as well as 
the upper and lower quartiles. We chose the median/upper-lower quartiles over the 
mean/standard-deviation to make our data less affected by storms that’s highly 
deviating from the average and to show a more realistic picture of the common 
behavior of the storms. 



  

Superposed solar wind parameters from OMNIWeb.
Maximum B

T
 and negative B

Z
 are observed around storm start. Most storms begin in the early phase of 

the HSS, before the solar wind reaches 500 km/s and during the time the solar wind plasma is 
significantly compressed, around the peak of the solar wind dynamic pressure.



  

Superposed AMPERE FAC density and SuperMAG rotated magnetic field perturbation from all 33 
storms at different times with respect to the zero epoch

● 1st  figure is 12 hours before zero epoch, during quiet time condition. Faint Region 1 and 2 
currents visible

● 2nd figure show slight increase in both the upward and downward FAC and minor enhancements in 
both the westward electrojet (WEJ) and eastward electrojet (EEJ)

● 3rd figure is at the zero epoch corresponding to the time Dst crosses to < -15 nT



  

● 4th figure is 1 hour and 10 minutes after zero epoch; time of maximum integrated FAC. Large 
enhancements in both Region 1 and 2 currents accompanied by large WEJ and EEJ

● 5th figure is at the Dst minimum

● 6th figure is one day after zero epoch, in the storm recovery phase. Ionospheric activity level still 
enhanced compared to the quiet time conditions



  

● Integrated AMPERE FAC – red line is the 
upward and blue is the downward FAC – 
shown here in four different MLT sectors

● Blue dashed line is the zero epoch. Red 
dashed lines show the time of maximum 
integrated FAC and Dst minimum (1 hour 
10 mins and 7 hours after zero epoch, 
respectively)

● Current start responding to the storm 
before zero epoch and reaches a 
maximum integrated value 1 hour and 10 
mins after zero epoch

● Maximum integrated FAC (|upward| +
|downward|) = 16.2 MA

● At Dst minimum the peak activity level 
has passed

● Total integrated FAC at Dst minimum = 
12.3 MA

● Largest currents and variability is 
observed in the dusk and dawn sector
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● Integrated WEJ < 0,  
integrated EEJ > 0
(integrated from 54 to 76 MLat)

● Maximum horizontal current 
activity occurs at the same time as 
maximum integrated FAC from 
AMPERE

● Enhancement in horizontal 
currents closely resembles 
enhancement observed in the FAC

● Maximum integrated WEJ in dawn 
sector is ~ 3 times larger than 
maximum integrated EEJ in dusk 
sector

● WEJ extends far into the midnight 
sector and is of similar magnitude 
in both the dawn and midnight 
sector
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Summary
● Work still in progress

● Majority of the geomagnetic storms starts in the early phase of the HSS/CIR events and the time of zero 
epoch coincides with the maximum IMF BT and minimum IMF BZ

● Ionospheric currents start to respond to the geomagnetic storm ~ 2 hours before the zero epoch, reaching 
maximum activity 1 hour and 10 minutes after zero epoch – 5 hours and 50 minutes prior to Dst minimum

● Maximum FAC and horizontal current activity observed at the same time

● Total integrated FAC at Dst minimum ~75% of maximum integrated FAC

● Largest FAC and variability observed in dusk and dawn sector. Largest horizontal currents observed in the 
dawn and midnight sector

● Maximum integrated WEJ in the dawn sector is 3 times larger than maximum integrated EEJ in dusk sector
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Data used in this study can be downloaded from:

AMPERE - http://ampere.jhuapl.edu/index.html
SuperMAG - http://supermag.jhuapl.edu/
OMNIWeb - https://omniweb.gsfc.nasa.gov/

Acknowledgement:

This work was supported by the Academy of Finland project 314664. We thank the AMPERE team and the AMPERE Science Center for providing 
the Iridium derived data products, the SuperMAG collaboration and all organizations involved for providing the ground based magnetometer data 
and the NASA/GSFC's Space Physics Data Facility's OMNIWeb for providing the OMNI data.

https://doi.org/10.5194/angeo-31-349-2013
https://doi.org/10.1029/2018JA026396
http://ampere.jhuapl.edu/index.html
http://supermag.jhuapl.edu/
https://omniweb.gsfc.nasa.gov/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

