

Simulating the propagation of wet snow avalanches: challenges and perspectives

Guillaume Chambon¹, Thierry Faug¹, Mohamed Naaim¹, Nicolas Eckert¹

¹Univ. Grenoble Alpes, INRAE, UR ETNA, Grenoble, France

> Wet snow avalanches

Distinctive characteristics:

- strong channelization (topography control)
- levées, ridges, fingering
- ✤ slow, pasty-like dynamics

Can we model these flows?

- ➤ issue of appropriate rheology
- need for careful validation benchmarks before scaling up to field applications

INRAO

Simulating wet avalanches EGU 2020 / Chambon, Faug, Naaim, Eckert / © Authors. All rights reserved.

> Flow rheology : basal shear-to-normal stress ratio (S/N)

Simulating wet avalanches

> Benchmark numerical simulations

Depth-averaged modelling approach:
robust, shock capturing numerical scheme
three toy topographies
systematic sensitivity analyses

Incline with smooth transition

INRAe

Simulating wet avalanches

EGU 2020 / Chambon, Faug, Naaim, Eckert / © Authors. All rights reserved.

Channeled slope

✤ Initial condition:

- cylindrical pile
- $h_0 = 0.6 \text{ m}$

• $V \approx 8.5 \text{ m}^3$

◆ μ = 0.5, ξ = 2000 m.s⁻² ↔ *τ_c* = 0 − 200 Pa

Oblique ridge

> Avalanche runout

Longitudinal profiles:

Cohesion induces shorter runouts ...

... and longer tails

15.0 12.5 10.0 7.5 5.0 2.5

0.0

*Note progessive shift in center of mass (CoM) location

INRAO

Simulating wet avalanches

> Avalanche dynamics

 $\begin{array}{c} 17.5\\ 15.0\\ 12.5\\ 10.0\\ 5\\ 0\\ 5\\ 0\\ 5\\ x_{(m)} \\ 25\\ 30\\ 35\\ 40\\ -10.5\\ 5\end{array}$

Cohesion slows down flow dynamics ...

... and freezes slow rearrangements of the deposit

*Note CoM comes to a halt before the front in presence of cohesion

INRA

Simulating wet avalanches

> Channelization

Transversal profiles:

Cohesion promotes flow channelization

Simulating wet avalanches

INRA

EGU 2020 / Chambon, Faug, Naaim, Eckert / © Authors. All rights reserved.

*Note progressive concentration of the deposit (fingering)

Influence of topography

Transversal profiles:

Cohesion promotes topographical control of the flow

*Note decrease in deposit lateral spread

Simulating wet avalanches

INRA

Simulating wet avalanches

Can we approach cohesion effects with a plain Voellmy model?

Voellmy model leads to wider and steeper deposits

*Note the steep jumps that lead to slow deposit rearrangements

INRAØ

Simulating wet avalanches

> Full-scale simulations of snow avalanches

Same depth-averaged modelling approach:

- robust, shock capturing numerical scheme
- Bourgeat avalanche track and protection dam (Chamonix, France)
- systematic sensitivity analyses

- ✤ Initial condition:
 - Release area of about 175 000 m²
 - $h_0 = 2.0 \text{ m}$

✤ 10 m digital terrain model
 ✤ μ = 0.3, ξ = 2000 m.s⁻²
 � τ_c = 0 - 600 Pa

INRAØ

Simulating wet avalanches EGU 2020 / Chambon, Faug, Naaim, Eckert / © Authors. All rights reserved.

> Full-scale simulations of snow avalanches

Flow heights during avalanche propagation:

 about half a minute after avalanche release

> Voellmy model leads to thinner and faster flows in the starting zone

The differences are not so pronounced (steep slope and initial times of the flow)

Simulating wet avalanches

> Full-scale simulations of snow avalanches

Flow heights during avalanche propagation:

- in the run-out zone (debris fan), upstream of the storage basin and Bourgeat dam
- nearly two minutes after avalanche release

Cohesive flow induces much longer tails

Note the significant time lag between Voellmy model flow and cohesive flows

INRAO

Simulating wet avalanches EGU 2020 / Chambon, Faug, Naaim, Eckert / © Authors. All rights reserved.

> Conclusions

How to model wet snow avalanches?

- Cohesion can explain certain distinctive features of wet snow avalanches:
 - flow channelization and concentration
 - topographical control
 - slower dynamics
- Voellmy model with increased dissipation can reproduce overall behavior of cohesive flows (runout, max velocity), but fails to capture flow duration and deposit morphology
- To go further:
 - detailed comparisons with experimental and field data
 - introduction of a viscous contribution to the rheology (pasty dynamics)
 - ...