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SIRS Metrology for stable isotope reference standards
(PI P. Brewer, NPL)
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Motivation N,O isotope research
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Measurements of the four most
abundant stable isotopocules of N,O
provides a valuable constraint on
source attribution of atmospheric
N,O.

References:

S. Toyoda et al. (2017) DOI: 10.1002/mas.21459
T. Denk et al. (2017) DOI:
10.1016/j.s0ilbio.2016.11.015

N,O isotopocules at natural
abundance levels can be analyzed by
iIsotope-ratio mass-spectrometry
(IRMS) and more recently optical
isotope ratio spectroscopy (OIRS).

References:
S. Toyoda et al. (1999) DOI: 10.1021/ac9904563
H. Wachter et al. (2008) DOI: 10.1364/0E.16.009239
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Presentation overview o8 @ Empa
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This presentation will highlight the recent progress, with respect to N,O isotope research,
achieved within the framework of the EMPIR project “Metrology for Stable Isotope Reference
Standards (SIRS)”, namely:

Part 1: The development of pure and diluted N,O reference materials (RMs), covering the
range of isotope values required by the scientific community. These gaseous standards
will be available as pure N,O or N,O diluted in whole air. N,O RMs were analyzed by an
international group of laboratories for 8"°N, 580 (MPI-BGC, Tokyo Institute of
Technology, UEA), 5"°N¢, 3" NP (Empa, Tokyo Institute of Technology) and &'’O (UEA)
traceable to the existing isotope ratio scales.

Part 2. The metrological characterization of the three most common commercial N,O
isotope OIRS analyzers (with/without precon QCLAS, OA-ICOS and CRDS) for gas
matrix effects, spectral interferences of enhanced trace gas concentrations (CO,, CH,, CO,
H,O), short-term and long-term repeatability, drift and dependence of isotope deltas on
N,O concentrations.

J. Mohn, Empa, EGU2020, N,O isotopes © Authors 2020. All rights reserved
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Part 1: Development of N,O RMs — Background :

= N,O isotope data are linked to the Air-N2 (for > N/'#N) and VSMOW (for 180/'€Q) scales.
First N,O isotope RMs with provisional delta values were provided by USGS, but not

SUItable for 2‘p0|ﬂt Callbratlon Ostrom et al. (2018) DOI: 10.1002/rcm.8157

= Link between AIR-N2 and site specific N,O isotopic composition provided by NH,NO,
thermal decomposition

§ - P —

= Stakeholders, including the atmospheric monitoring community, encourage the release of
RMs, pure-N,O gas or N,O in air with stated uncertainty, especially for 3™>N® and 8> NP,

S. Toyoda & N. Yoshida (1999) DOI: 10.1021/ac9904563
M. Westley et al. (2007) DOI: 10.1002/rcm.2828
J. Mohn et al. (2016) DOI: 10.1002/rcm.7736

GGMT Report (2020) in preparation

J. Mohn, Empa, EGU2020, N,O isotopes © Authors 2020. All rights reserved
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Preparation of pure N,O with different isotopic composition : °Empa
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= Different qualities of commercially available N,O were analysed but offer only a
limited span of 3"°N¢, 8"°NP, 580

= 6 RMs prepared by volumetric doping of commercial N,O with isotopic pure
BNTNO, “NT>NO, 80-enriched N,O and ">NB-depleted N,O

Vici valve
“bulk” N,O /‘\
QQ S e

Eg 150 — O
=
,0 calibrated RMs 57 g "
volume
§ 50 — o] o
00 v , : | g -
o & =
to vacuum . ; .
d15N d180 SP vs. AIR-N2
448 46 56 446
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Optimisation of NH,NO; thermal equilibration technique

NH,NO; salts (51-S6) prepared by gravimetric doping with
1>’NH/4NO;, NH,">NO;, 8'°N-NH, depleted NH,NO;, 81> N-NO;-
depleted NH,NO; covering the 8N range of N,O gases.
Homegeneity of 8"°N in salts confirmed by IRMS at MPI-BGC.

8""N-NH,, 8™ N-NO; and 3"N-NH,NO; in S1-S6 analysed at
different laboratories / techniques: MPI-BGC, University of Eastern
Finland, Tokyo Tech, University Vienna, University Ghent, University
Pittsburg, UC Davis and Hydroisotope.

Yield of thermal decomposition of NH,NO; optimized in two
variants: 1) NH,NO; only, 2) NH,NO; with (NH,),SO, / NH,HSO,
novel technique achieves high yield of 92-96% (for 1) and 94-97%

(for 2) Szabo et al. (1985) DOI:10.1524/zpch.1985.144.144.187

S1-S6 decomposed to N,O, purified and purity confirmed by FTIR

J. Mohn, Empa, EGU2020, N,O isotopes
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Glass bulbs with N
decomposition

Gravimetric determination of N,O yield

© Authors 2020. All rights reserved



Analysis of N,O RMs by IRMS and laser spectroscopy o® @ Empa
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» MPI-BGC analysed the prepared N,O RMs for 3N and 880 using
dual inlet IRMS (DI-IRMS).

= Tokyo Institute of Technology analysed RMs for 8">°N¢, §'°NF and
5180 by DI-IRMS.

= University of East Anglia analysed RMs for >N, 5’80 and 57O
with/without decomposition in a heated gold tube by IRMS

IRMS analysis at MPI-BGC

= Empa analysed the N,O RMs for §'°N¢, 3" NP and 880 by laser ; m—m
spectroscopy against Tokyo Tech standards and is currently ) s
performing analysis against own standards produced by NH,NO; B T
thermal decomposition. I T

) | | |

= Summer / Fall 2020: Manuscript to report isotopic composition of mor  am2  zmy s
pure N,O RMs submitted and release of gases o otane ot oty e

J. Mohn, Empa, EGU2020, N,O isotopes © Authors 2020. All rights reserved



Part 2. Characterization of the three most common oe OEmpa |
commercial N,O isotope OIRS analyzers

= What is the precision and repeatability of instruments?

_ _ . Techment
= Do changes in N,O concentration affect isotope N0 isotopocy,
. I characq.: € Meagy,,
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= Does the presence of other trace gases affect delta values
(spectral interferences — “overlapping peaks”)?
co,, CH,, CO Paper selected
as Highlight

For details please see:
S. Harris et al. (2020) DOI: 10.5194/amt-2019-451
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MIR Laser spectroscopy ks @ Empa
Materials Science and Technalogy
10‘18 — I https://www.cfa.harvard.edu/hitran/
107" = ‘
N 325 ppb N,O
' ; x 10
£ 102 (x10)
o
5 = 0,
o E 15 /0 H20
% §10-21 390 ppm CO,
Eo
=
,E @10 22
,g,_% 1.82 ppm CH,
g-é 23 (x 10)
=10
o
g 24
£ 10
-
10-25 “ M‘ HM‘
10-26 | T T T T | T “ll II IIIMIII T T Il T l||I T T |

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
J. Mohn, Empa, EGU2020, N,O isotopes wavenumber [cm-1] © Authors 2020. All rights reserved



oe)

@ Empa

Materials Science and Technalogy

MIR Laser spectroscopy — “zoom in” s

2180 to 2210 cm™!
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Commercial laser spectrometer

Direct absorption spectroscopy
(QCLAS)

Dual / Mini Laser Trace Gas Monitor
2187.7-2188.2cm1, 2203.1-2203.4cm"!

Dual QCLAS (2012, 2014, 2016)
§15Ne, §15NB, §180

TREX-mini QCLAS (2013)
§15N*, §15NB, §180

J. Mohn, Empa, EGU2020, N,O isotopes

Cavity ring-down spectroscopy
(CRDS)

G5101-1 2187.7-2188.2cm™”
G5131-1 2195.7-2196.3cm”

G5131-1 (2014)
§15N*, §15NB, §180

G5131-1 (2018)
§15N*, §15NB, 5180

oe)
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Off-axis integrated cavity output
Spectroscopy (OA-ICOS)

\\

Los Gatos Research
A MEMEER OF THZ 488 GROUP

N20IA-30e-EP
914-0027 2192.1-2192.5cm"!
914-0022, 914-0060

914-0027 (2014)
§15Ne, §15NB, §180

© Authors 2020. All rights reserved



Precision experiments oe @ Empa
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>

T TREX-QCLAS

Exp. Gas 1 Gas 2
~330 ppb pressurized air -
~ 1’000 ppb 90 ppm N,O (S1) in “full matrix” “full matrix”
~10°000 ppb 90 ppm N,O (S1) in “full matrix” “tull matrix”

“full matrix”: 20.95% O, 0.95% Ar, 400 ppm CO,, 2 ppm CH,, 200 ppb CO in N,

[Ler]

precision

fA-23e
P
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Exemplary Allan deviation (square root of Allan Variance)
plots for the OA-ICOS I (blue), CRDS | (red), CRDS Il
(black), QCLAS 1 (green), QCLAS Il (purple) and QCLAS I
(brown) at 326.5 ppb N,O mole fractions.
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N,O concentration effects on delta values ojfe @ Empa
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T TREX-QCLAS

e

Exp. Gas 1 Gas 2

~330-1"250 ppb 90 ppm N>O (S1) in “full matrix” “full matrix”
“full matrix”: 20.95% O,, 0.95% Ar, 400 ppm COs, 2 ppm CH, 200 ppb CO in N,

|
TA-23e
P F
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N,O concentration effects on delta values
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Deviations of the measured 8NP, values according to
1/[N,QO] for the OA-ICOS | (blue), CRDS I (red), CRDS Il
(black) and QCLAS | (green). Measurements span the
manufacturer-specified operational ranges of the analyzers.
A linear regression is indicated by the solid line.

© Authors 2020. All rights reserved



Gas matrix and trace gas experiments o @ Empa
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T TREX-QCLAS

Gas | Gas 2 Gas 3 ™
90 ppm N>O (S1) in N2 + O» Nz + O, Na
90 ppm N,O (S1) in Nz + O Nz + O, N2+ Ox + Ar

9Opp1nN20(Sl)inN2+Oz+Ar N2+ O, + Ar N2+ Oz + Ar + CO»
90ppmN20(Sl)inNz+Oz+Ar No+ O, + Ar N, + O, + Ar + CHy
90 ppm N20 (S1)in Na + O3 = Ar - Na+ Oy +Ar  Na+ Oy + Ar+ CO

— time
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Results gas matrix - Oxygen o @ Empa
3] 301 Deviations of the measured 8NP values
53 200 201 according to O, (%) at 330, 660, 990 ppb
- 12: %" 1EM ] N,O for the OA-ICOS | (blue), CRDS I
<9 {8 ——¢ ¢ " 10 (red), CRDS I (black), QCLAS | (green) and
20 " 20 TREX-QCLAS | (brown). The standard
20 -5 -0 5 0 20 -5 -0 5 0 deviation of the Anchor gas (x1c) is
A O [%] A Oz [%] indicated by dashed lines. Data points

represent the mean and standard
deviation (1o) of triplicate measurements.

;fé Dependencies are best-described using
ii l ] ] linear regression, which are indicated by a
< .10 104 solid line.
-20 1 -20 1
20 5 -0 5 0 20 5 -0 5 0 . )
A O, [%] A Oy [%] empirical corrections (O.):
30 '
;z‘ ] 0 330 ppb
g 0 660 ppb A8 = (a, [N,0]%+b,[N,0] + ¢,)[0,]
< <>990 ppb
20 45 -0 -5 0 .
A Oy [% But complex interplay of [O,] and [N,O]
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Results trace gases — CO,
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Deviations of the measured 8'>N¢ values
according to CO, (ppm) at different N,O
mole fractions (330, 660 and 990 ppb) for
the OA-ICOS | (blue), CRDS I (red), CRDS
Il (black), QCLAS | (green) and TREX-
QCLAS | (brown). The standard deviation
of the Anchor gas (x1c) is indicated by
dashed lines. Data points represent the
mean and standard deviation (1c) of
triplicate measurements. Dependencies
are best-described by linear fits, which are
indicated by solid lines.

empirical corrections (CO,, N,O):

AN,O = (a; x [N,0] + b;)[CO,]

AS = ([lj‘;‘o] + b2 )[CO,]

© Authors 2020. All rights reserved
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Results trace gases — CH, @ Empa
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Results trace gases — CO @ Empa

5'5N offset (%o)

Deviations of the measured &> N¢ values
according to CO (ppm) at 330 ppb N,O for
OA-ICOS | (blue), CRDS | (red), CRDS Il

£
g (black), QCLAS | (green) and TREX-QCLAS |
z (brown). The standard deviation of the
° Anchor gas (x1c) is indicated by dashed
o5 1 15 2 o5 1 15 2 lines. Data points represent the mean and
CO (ppm) CO (ppm) standard deviation (1c) of triplicate
] measurements. Dependencies are best-
PN il b el i """" 1 described by linear fits, which are indicated
T by solid lines.
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Workflow

Pre-Measurement

What is the expected [N,0], desired precision and sample gas volume? # Systematically measure a reference gas
v to account for drift.

Can temperature stability be achieved and maintained?

v

Will sample gas CO,, CO and/or H,0 deviate from reference gases?

v

Will sample gas CO,, CO and/or H,0 interfere with the measurements
of the chosen analyser?

v

Implement Ascarite, Sofnocat and/or H,O traps

v \ 4

Will sample gas CH, deviate from reference gases?

Measurement

v

Measure reference gases with identical
isotopic composition but with at least 3
different mole fractions that span the
expected [N,0O] range of the sample
gases. This may be achieved via dynamic
dilution (this study) or static mixtures.

v

Measure a minimum of two reference
gases with identical N,O mole fractions
but different isotopic composition
spanning the expected isotopic range of
the sample gases.

v

Will sample gas CH, interfere with the measurements of the chosen
analyser?

v

Derive interference equations for analyzer and co-
measure CH,. For co-varying N,O and CH, more
sophisticated correction schemes must be applied.

v \ 4

Will sample gas O, and/or Ar deviate from those of the reference gases?

v

Derive interference equations for analyzer and co-measure O, and/or Ar. For co-
varying N,O and O, / Ar more sophisticated correction schemes must be applied.

v

| Measure the sample gases |

For details see S. Harris et al. (2020)
DOI: 10.5194/amt-2019-451

J. Mohn, Empa, EGU2020, N,O isotopes
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Post-Measurement

If applicable apply analyzer specific O,,
Ar and CH, correction equations.

v

Apply N,O mole fraction correction.

A 2

Correct for drift.

v

Standardize corrected & values to
international scales.

* No
* Yes

© Authors 2020. All rights reserved




Summary K @ Empa

= N,O isotope reference gases with different deltas needed (and will get available within SIRS)
= Field-deployable and precise laser instruments for N,O isotopes on the market
= For accurate results a number of uncertainty terms have to be reduced / corrected:
T fluctuations, [N,O] changes, [O,]/[Ar] (gas matrix) changes, [CO,]/[CH,]/[CO]/... (spectral
interference) changes

= Preconcentration can solve some problems but with the price of additional effort

=  Workflow suggested on how to perform accurate isotope measurements by laser
Spectroscopy

Thank you for your interest! If you have questions please contact me:
joachim.mohn@empa.ch
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