N₂O isotope research: development of reference materials and metrological characterization of OIRS analyzers within the SIRS project

e EMPIR initiative is co-funded by the European Union's Horizon 202

Joachim Mohn¹, Joanna Rupacher¹, Heiko Moossen², Sakae Toyoda³, Christina Biasi⁴, Jan Kaiser⁵, Stephen Harris⁶, Jesper Liisberg⁷, Benjamin Wolf⁸, Longlong Xia⁸, Matti Barthel⁹, Longfei Yu¹, Kristýna Kantnerová¹, Jing Wei¹, Kerstin Zeyer¹, Myriam Guillevic¹, Ruth Pearce¹⁰, Eric Mussell Webber¹⁰, Aimee Hillier¹⁰, Bryce Kelly⁶, Thomas Blunier⁷, Naohiro Yoshida^{3,11} and Paul Brewer¹⁰

- ¹ Empa, Laboratory for Air Pollution/Environmental Technology, Dübendorf, Switzerland
- ² Max-Planck-Institute for Biogeochemistry (MPI-BGC), Stable Isotope Laboratory (BGC-IsoLab), Jena, Germany
- ³ Tokyo Institute of Technology, Department of Chemical Science and Engineering, Yokohama, Japan
- ⁴ University of Eastern Finland, Biogeochemistry Research Group, Kuopio, Finland
- ⁵ University of East Anglia (UEA), Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, Norwich, UK
- ⁶ UNSW Sydney, School of Biological, Earth and Environmental Sciences, Sydney, Australia
- ⁷ University of Copenhagen, Centre for Ice and Climate, Niels Bohr Institute, Copenhagen, Denmark
- ⁸ Karlsruhe Institute of Technology, IMK-IFU, Garmisch-Partenkirchen, Germany
- ⁹ ETH Zürich, Department of Environmental Systems Science, Zürich, Switzerland
- ¹⁰ National Physical Laboratory, Gas and Particle Metrology, Teddington, UK
- ¹¹ Tokyo Institute of Technology, Earth-Life Science Institute, Tokyo, Japan
- *presenting author: joachim.mohn@empa.ch

J. Mohn, Empa, EGU2020, N₂O isotopes, Session AS5.11, https://doi.org/10.5194/egusphere-egu2020-18624

SIRS Metrology for stable isotope reference standards (PI P. Brewer, NPL)

Empa

Materials Science and Technology

Motivation N₂O isotope research

Measurements of the four most abundant stable isotopocules of N_2O provides a valuable constraint on source attribution of atmospheric N_2O .

References:

denitrification

nitrifier denitrification

 $\rightarrow NO_2^- \longrightarrow NO \longrightarrow N_2O \longrightarrow N_2$

 $\rightarrow N_2O$

NO3⁻ -

NH₂OH

 NH_4^+

 $NO_2^- \rightarrow NO$

N20

nitrification

S. Toyoda et al. (2017) DOI: 10.1002/mas.21459 T. Denk et al. (2017) DOI: 10.1016/j.soilbio.2016.11.015

N₂O isotopocules at natural abundance levels can be analyzed by isotope-ratio mass-spectrometry (IRMS) and more recently optical isotope ratio spectroscopy (OIRS).

References:

S. Toyoda et al. (1999) DOI: 10.1021/ac9904563

H. Wächter et al. (2008) DOI: 10.1364/OE.16.009239

Presentation overview

This presentation will highlight the recent progress, with respect to N₂O isotope research, achieved within the framework of the EMPIR project "Metrology for Stable Isotope Reference Standards (SIRS)", namely:

- Part 1: The **development of pure and diluted N₂O reference materials (RMs)**, covering the range of isotope values required by the scientific community. These gaseous standards will be available as pure N₂O or N₂O diluted in whole air. N₂O RMs were analyzed by an international group of laboratories for δ^{15} N, δ^{18} O (MPI-BGC, Tokyo Institute of Technology, UEA), δ^{15} N^{α}, δ^{15} N^{β} (Empa, Tokyo Institute of Technology) and δ^{17} O (UEA) traceable to the existing isotope ratio scales.
- Part 2: The metrological characterization of the three most common commercial N_2O isotope OIRS analyzers (with/without precon QCLAS, OA-ICOS and CRDS) for gas matrix effects, spectral interferences of enhanced trace gas concentrations (CO₂, CH₄, CO, H₂O), short-term and long-term repeatability, drift and dependence of isotope deltas on N₂O concentrations.

J. Mohn, Empa, EGU2020, N₂O isotopes

- Part 1: Development of N₂O RMs Background
 - N₂O isotope data are linked to the Air-N2 (for ¹⁵N/¹⁴N) and VSMOW (for ¹⁸O/¹⁶O) scales. First N₂O isotope RMs with provisional delta values were provided by USGS, but not suitable for 2-point calibration
 - Link between AIR-N2 and site specific N₂O isotopic composition provided by NH₄NO₃ thermal decomposition

S. Toyoda & N. Yoshida (1999) DOI: 10.1021/ac9904563 M. Westley et al. (2007) DOI: 10.1002/rcm.2828 J. Mohn et al. (2016) DOI: 10.1002/rcm.7736

• Stakeholders, including the atmospheric monitoring community, encourage the release of RMs, pure-N₂O gas or N₂O in air with stated uncertainty, especially for $\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$.

GGMT Report (2020) in preparation

J. Mohn, Empa, EGU2020, N₂O isotopes

Preparation of pure N₂O with different isotopic composition

- Different qualities of commercially available N₂O were analysed but offer only a limited span of $\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$, $\delta^{18}O$
- 6 RMs prepared by volumetric doping of commercial N₂O with isotopic pure $^{15}N^{14}NO$, $^{14}N^{15}NO$, ^{18}O -enriched N_2O and $^{15}N^{\beta}$ -depleted N_2O

J. Mohn, Empa, EGU2020, N₂O isotopes

© Authors 2020. All rights reserved

Empa

Materials Science and Technology

SF

Optimisation of NH₄NO₃ thermal equilibration technique

- NH₄NO₃ salts (S1-S6) prepared by gravimetric doping with ¹⁵NH₄NO₃, NH₄¹⁵NO₃, δ¹⁵N-NH₄ depleted NH₄NO₃, δ¹⁵N-NO₃depleted NH₄NO₃ covering the δ¹⁵N range of N₂O gases. Homegeneity of δ¹⁵N in salts confirmed by IRMS at MPI-BGC.
- δ¹⁵N-NH₄, δ¹⁵N-NO₃ and δ¹⁵N-NH₄NO₃ in S1-S6 analysed at different laboratories / techniques: MPI-BGC, University of Eastern Finland, Tokyo Tech, University Vienna, University Ghent, University Pittsburg, UC Davis and Hydroisotope.
- Yield of thermal decomposition of NH₄NO₃ optimized in two variants: 1) NH₄NO₃ only, 2) NH₄NO₃ with (NH₄)₂SO₄ / NH₄HSO₄ novel technique achieves high yield of 92-96% (for 1) and 94-97% (for 2)
- S1-S6 decomposed to N₂O, purified and purity confirmed by FTIR

Glass bulbs with NH_4NO_3 used for thermal decomposition

Gravimetric determination of N_2O yield

J. Mohn, Empa, EGU2020, N₂O isotopes

Analysis of N₂O RMs by IRMS and laser spectroscopy

- MPI-BGC analysed the prepared N₂O RMs for δ^{15} N and δ^{18} O using dual inlet IRMS (DI-IRMS).
- Tokyo Institute of Technology analysed RMs for $\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$ and $\delta^{18}O$ by DI-IRMS.
- University of East Anglia analysed RMs for $\delta^{15}N$, $\delta^{18}O$ and $\delta^{17}O$ with/without decomposition in a heated gold tube by IRMS
- Empa analysed the N₂O RMs for δ¹⁵N^α, δ¹⁵N^β and δ¹⁸O by laser spectroscopy against Tokyo Tech standards and is currently performing analysis against own standards produced by NH₄NO₃ thermal decomposition.
- Summer / Fall 2020: Manuscript to report isotopic composition of pure N₂O RMs submitted and release of gases

J. Mohn, Empa, EGU2020, N₂O isotopes

IRMS analysis at MPI-BGC

Spectra of the laser spectrometer used for N_2O isotope analysis at Empa

- Part 2: Characterization of the three most common commercial N₂O isotope OIRS analyzers
 - What is the precision and repeatability of instruments?
 - Do changes in N₂O concentration affect isotope measurements (non-linearities)?
 330 – 1250 ppb N₂O
 - Do changes in the gas matrix affect delta values (pressure broadening)? i.e. incubation experiments
 - Does the presence of other trace gases affect delta values (spectral interferences – "overlapping peaks")?
 CO₂, CH₄, CO

For details please see: S. Harris et al. (2020) DOI: 10.5194/amt-2019-451

J. Mohn, Empa, EGU2020, N₂O isotopes

MIR Laser spectroscopy

J. Mohn, Empa, EGU2020, N₂O isotopes

Commercial laser spectrometer

Direct absorption spectroscopy (QCLAS)

Dual / Mini Laser Trace Gas Monitor 2187.7–2188.2cm⁻¹, 2203.1–2203.4cm⁻¹

Dual QCLAS (2012, 2014, 2016) $\delta^{15}N^{\alpha},\,\delta^{15}N^{\beta},\,\delta^{18}O$

TREX-mini QCLAS (2013) $\delta^{15}N^{\alpha}, \, \delta^{15}N^{\beta}, \, \delta^{18}O$

Cavity ring-down spectroscopy (CRDS)

G5101-I 2187.7–2188.2cm⁻¹ G5131-I 2195.7–2196.3cm⁻¹

 $\begin{array}{l} {\sf G5131-I} \ (2014) \\ \delta^{15} {\sf N}^{\alpha}, \ \delta^{15} {\sf N}^{\beta}, \ \delta^{18} {\sf O} \end{array}$

G5131-I (2018) $\delta^{15}N^{\alpha}, \, \delta^{15}N^{\beta}, \, \delta^{18}O$

Off-axis integrated cavity output Spectroscopy (OA-ICOS)

N2OIA-30e-EP 914-0027 2192.1–2192.5cm⁻¹ 914-0022, 914-0060

914-0027 (2014) $\delta^{15}N^{\alpha}, \, \delta^{15}N^{\beta}, \, \delta^{18}O$

J. Mohn, Empa, EGU2020, N₂O isotopes

Precision experiments

J. Mohn, Empa, EGU2020, N₂O isotopes

Allan precision

Exemplary Allan deviation (square root of Allan Variance) plots for the OA-ICOS I (blue), CRDS I (red), CRDS II (black), QCLAS I (green), QCLAS II (purple) and QCLAS III (brown) at 326.5 ppb N_2O mole fractions.

N2OIA-23e -EP

J. Mohn, Empa, EGU2020, N₂O isotopes

N₂O concentration effects on delta values

J. Mohn, Empa, EGU2020, N₂O isotopes

N₂O concentration effects on delta values

Deviations of the measured $\delta^{15}N^\beta$, values according to $1/[N_2O]$ for the OA-ICOS I (blue), CRDS I (red), CRDS II (black) and QCLAS I (green). Measurements span the manufacturer-specified operational ranges of the analyzers. A linear regression is indicated by the solid line.

J. Mohn, Empa, EGU2020, N₂O isotopes

Gas matrix and trace gas experiments

J. Mohn, Empa, EGU2020, N₂O isotopes

Results gas matrix - Oxygen

Deviations of the measured $\delta^{15}N^{\beta}$ values according to O₂ (%) at 330, 660, 990 ppb N₂O for the OA-ICOS I (blue), CRDS I (red), CRDS II (black), QCLAS I (green) and TREX-QCLAS I (brown). The standard deviation of the Anchor gas (±1 σ) is indicated by dashed lines. Data points represent the mean and standard deviation (1 σ) of triplicate measurements. Dependencies are best-described using linear regression, which are indicated by a solid line.

empirical corrections (O₂): $\Delta N_2 O = (a_1 \ [N_2 O]^2 + b_1 [N_2 O])[O_2]$ $\Delta \delta = (a_2 \ [N_2 O]^2 + b_2 [N_2 O] + c_2)[O_2]$

But complex interplay of [O₂] and [N₂O] © Authors 2020. All rights reserved

J. Mohn, Empa, EGU2020, N₂O isotopes

Results trace gases – CO₂

J. Mohn, Empa, EGU2020, N₂O isotopes

Deviations of the measured $\delta^{15}N^{\alpha}$ values according to CO₂ (ppm) at different N₂O mole fractions (330, 660 and 990 ppb) for the OA-ICOS I (blue), CRDS I (red), CRDS II (black), QCLAS I (green) and TREX-QCLAS I (brown). The standard deviation of the Anchor gas (±1 σ) is indicated by dashed lines. Data points represent the mean and standard deviation (1 σ) of triplicate measurements. Dependencies are best-described by linear fits, which are indicated by solid lines.

empirical corrections (CO_2 , N_2O):
$\Delta N_2 0 = (a_1 \times [N_2 0] + b_1)[CO_2]$
$\Delta \delta = \left(\frac{a_2}{[N_2 O]} + b_2\right) [CO_2]$

Results trace gases – CH₄

Deviations of the measured $\delta^{15}N^{\alpha}$ values according to CH₄ (ppm) at 330 ppb N₂O for the OA-ICOS I (blue), CRDS I (red), CRDS II (black), QCLAS I (green) and TREX-QCLAS I (brown). Data points represent the mean and standard deviation (1s) of triplicate measurements. Dependencies are best-described by linear fits, which are indicated by solid lines.

J. Mohn, Empa, EGU2020, N₂O isotopes

Results trace gases – CO

Deviations of the measured $\delta^{15}N^{\alpha}$ values according to CO (ppm) at 330 ppb N₂O for OA-ICOS I (blue), CRDS I (red), CRDS II (black), QCLAS I (green) and TREX-QCLAS I (brown). The standard deviation of the Anchor gas (±1 σ) is indicated by dashed lines. Data points represent the mean and standard deviation (1 σ) of triplicate measurements. Dependencies are bestdescribed by linear fits, which are indicated by solid lines.

J. Mohn, Empa, EGU2020, N₂O isotopes

Workflow

🧐 Empa

Summary

- N₂O isotope reference gases with different deltas needed (and will get available within SIRS)
- Field-deployable and precise laser instruments for N₂O isotopes on the market
- For accurate results a number of uncertainty terms have to be reduced / corrected: T fluctuations, [N₂O] changes, [O₂]/[Ar] (gas matrix) changes, [CO₂]/[CH₄]/[CO]/... (spectral interference) changes
- Preconcentration can solve some problems but with the price of additional effort
- Workflow suggested on how to perform accurate isotope measurements by laser spectroscopy

Thank you for your interest! If you have questions please contact me: joachim.mohn@empa.ch

J. Mohn, Empa, EGU2020, N₂O isotopes