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Local interstellar cloud:
partially ionized hydrogen
plasma (H, e, p, He etc.) with
typical parameters:

T~ 6700 K
n,~0.02-0.1cm? n,;~0.1
-0.2cm?3

V~23-26 km/s =>
«interstellar wind»
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Multi-component nature of the heliosphere:

electrons and protons;
interstellar neutrals (H, He, O);
energetic particles (ACR, GCR, ENA);

magnetic fields (heliospheric and
interstellar);

time-depended and 3D nature of the
problem due to solar cycle and
heliolatitudinal variations of the solar
wind;



Interstellar hydrogen atoms inside the
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» Due to large mean free path H atoms
penetrate deeply to the heliosphere,
where they can be measured directly or
indirectly.

»The hydrogen atoms provide us
information on the parameters of the
LISM as well as on the properties of the
heliospheric interface region.

» Detailed kinetic model of the velocity
distribution function of hydrogen atoms
is necessary to analyze the experimental
data.

- the main process of interaction between
the neutral and charged components

Tools for diagnostic of H distribution inside the heliosphere are measurements of backscattered
solar Lyman-alpha radiation and direct measurements by IBEX-Lo.



The Interstellar Boundary Explorer (IBEX)
is a NASA satellite in Earth orbit

Sun

Earth's Solar | LaunCh. 2008;

Data: from 2009 till now;

Spin Sun

Sensor FOV

) the interstellar and energetic
f% neutrals: H, O, Ne, He.

Su~n | D B ]BE)f?jX IBEX is dedicated to observe fluxes of
‘ )

Earth's
Magnetosphere

IBEX Spacecraft Geometry of IBEX measurements
allows to obtain one full sky map

Interstellar Gas Trajectories during 0.5 year.

A) Gravitational Focus

The main goal of the mision: remote
sensing of the heliospheric boundary.

Two detectors:

IBEX-Hi (300 eV — 6 keV) - ENA;
IBEX-Lo (10 eV — 2 keV) — interstellar
low energetic neutrals.

Fig. from Moebius et al., Science, 2009




Example of the IBEX-Lo data: ISN hydrogen
fluxes at 1 AU [1/(cm2 srs)] in 2009

energy bin 1: 11-21 eV

w
<
o

120000
110000
100000
90000
80000
70000
60000
50000
40000
30000
20000
10000

spin angle ~ latitude

N
N
(=3

15 20 30

relative uncertainty

25

spin angle ~ latitude

15 20 25 30

orbit number ~ longitude

300

280

energy bin 2: 20-41 eV

20 25 30

relative uncertainty

20 25 30
orbit number ~ longitude

120000
110000
100000
90000
80000
70000
60000
50000
40000
30000
20000
10000
8000
6000
4000
2000

Temporal variations during solar cycle:

* The ISN H data are cleaned
from the signal of the ISN He
atoms.

* The all data are presented
and described by Galli et al.,
ApJ, 2019.

ISN H fluxes

ecl. lon. = 261° bin 1
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The considered data: 2009-2012 + 2017-2018

* We decided to consider the ISN H fluxes measured in energy bin 1 + bin 2 together (i.e. integrated
over 11-41 eV);

* We consider only the directions where the relative uncertainty of the fluxes is less than 0.9;

*  Mostly we consider the data in the primary format of orbit number and the spin angle, but
sometimes for a better representation we consider the data rebinned to the format of ecliptic maps.

ISN H fluxes for bin1+bin2, [1/(cm2 sr s)]
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3D time-dependent kinetic model of the H atoms
distribution inside the heliosphere

Kinetic equation:
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Hydrogen distribution in the heliosphere is affected by:
1. local effects that are important near the Sun (solar gravitation F, radiation

F.., and ionization [5;): model is 3D and time-depended due to detailed
description of these effects;

2. Kinetic effects of the heliospheric interface: boundary conditions at 70 AU:
H distribution function at 70 AU is not Maxwellian and is taken from results of
the self consistent kinetic-MHD model by Izmodenov & Alexashov, 2020.



Input parameters of the model

* Charge exchange ionization rate: 3, ¢ (t,A), A — heliolatitude;

In the ecliptic plane 3, ((t,A=0) is calculated based on parameters of the solar wind
that are known from OMNI database. Dependence on heliolatitude is derived from
the SOHO/SWAN data (by Eric Quemerais & Dimitra Koutroumpa);
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* Photoionization rate: 3, ¢(t,A);
dependence on time is based on data from the database SOLAR2000; dependence
on A is the same as for the charge-exchange rate;

* Solar gravitation and radiation pressure: u(t,A,v,);
l(t,A,v,) is calculated from the solar Lyman-alpha flux (LASP Lyman-a composite,
version 4, Machol et al., 2019) by using a formula proposed by Kowalska-
Leszczynska et al. (2020);



What do we need to take into account for modelling of the IBEX-Lo
data | |

* real position and velocity of IBEX; - p(0.4) it dhiogn 1
. . . . 4 r > imet imator -+

* real spin-axis orientation; ir "

* collimator: point spread function:

P(6,0) ;

* energy transmission function: F
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e spatial and temporal averaging of H

fluxes by the same way as it is done tpin phase
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Model results: effect of 1 on the ISN H flux maps (binl+bin2, 11-41 eV)

u=0.8, f=4.d-7 1=0.999, B=4.d-7
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u=1.4, p=4.d-7 u=1.6, p=4.d-7
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Increase of u leads to:

- shift of maximum to the
right;

- decrease of the fluxes;

- shape of the map is
about the same and does
not depend on ;
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Model results: effect of 3 on the ISN H flux maps (binl+bin2, 11-41 eV)

1=0.999, B=2.66d-7 u=0.999, B=4.d-7 1=0.999, B=6.d-7
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* increase of 3 by a factor of 2.25 leads to decrease
of the fluxes by a factor of 10.5;

* increase of 3 does not change a shape of the map
as well as position of the maximum,;
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Temporal variations of the ISN H fluxes
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ISN H fluxes at the same direction (ecl. lon = 261°, ecl. Lat. = 3°) in 2009-2018:

* ratio of fluxes in energy bin
1 to fluxes in energy bin 2 in
the data is systematically
larger than in the model (for
2009-2011 and 2017-2018)
=> probably there is a
technical issue of dividing
the fluxes between energy
bins in the data. Therefore
we decided to consider the
mixture of fluxes in energy
bin 1 and 2;

* for bin1+bin2 temporal
variations of the fluxes are
gualitatively the same in the
data and in the model, but
guantitative difference is a
factor of 2-3.



Comparison between the data and the model results

The model results are multiplied by a factor of flux_max_data / flux_max_model for each year:
data 2009 model*1.92 data 2012  model*0.36
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Data

1D slices in ecliptic coordinates
(longitude = 261° and latitude = 3°)

Model (multiplied by the same factor as in previous slide)
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Fitting of the data by varying 1, and
B, in the model

w(t, v, )=ty *F o (t,V,A)/F o (t,v,=0,A), F,.,, is @ function from
Kowalska-Leszczynska et al. (2020);

B(A)=Bo*Bmodell )/ Bmogel(A=0) , Bioger is the total ionization rate
averaged over the considered time period for one IBEX map;

by minimization of y? we fit the IBEX-Lo ISN H flux maps (separately
for each year) and find the best fitting parameters u, and 3,

for the fitting we chose those directions on the maps where relative
uncertainty of the data is less than 0.9.
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Results of the fitting: ¥2 maps
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Comparison of the fitting results with the initial model

I, obtained from the IBEX-Lo data parameters

L, obtained from the solar Ly-a flux
(by Kowalska-Leszczynska et al.,2020 for v,=0)

B, obtained from the IBEX-Lo data
B, obtained from the OMNI

L, obtained by Rahmanifard et al. (2020) based on IBEX-Lo data database in the ecliptic plane
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* For u,: the most difference is in 2009 when the IBEX-Lo data predict larger p then it was thought before;

* For B,: an agreement is quite good besides 2012 when the IBEX-Lo data show very low ISN H fluxes and
therefore quite large 3, is obtained by our fitting procedure; probably there is some technical problem with
a calibration factor of IBEX-Lo in 2012 or just statistic is not enough;

* Our results for i, are close to those obtained by Rahmanifard et al. (2020) — for the fitting they use only
position of maximum fluxes and did not use maps of the fluxes;



Comparison of the data with the best fit model results

data 2012
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Results of the fitting procedure by using of 3 different models of the
ISN H distribution

*Model 1 is the initial 3D quasi-stationary model with non-maxwellian boundary conditions at
70 AU due to distribution of the ISN H flow at the heliospheric boundary;

*Model 2 is the same as the Model 1, but without heliolatitudinal variations of the ionization
rate, i.e. B=const=[3,;

*Model 3 is the same as the Model 1 but with simple maxwellian boundary conditions at 70 AU;

Model 1 Model 2 Model 3
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" [n general, it is seen that results of different models are close to each other => determination
of uy and 3, from the IBEX-Lo data could be considered as model independent.

= But, the Model 3 provides systematically larger 2., (besides 2017) compared to the Models 1
and 2.



Summary

ratio of the fluxes measured in energy bins 1 and 2 is systematically larger in the data
compared to the model, we expect possible technical problems with the separation of
energy channels. Therefore, it is better to consider a sum of the fluxes measured in 1-2
energy bins together;

the fluxes in binl+bin2 decrease from 2009 to 2012, disappear in 2013-2016 and appear
again in 2017-2018, this temporal evolution is confirmed by the model results;

The model fluxes are systematically smaller than the measured ones for all years besides
2012, where the measured fluxes are extremely low (smaller than the modelled one by a
factor of 2.7). This suggests that there may be technical problems with calibration in 2012;

The model calculations show that the solar radiation pressure (i) influences both position of
the maximum fluxes and absolute value of the fluxes, while the ionization rate (B) influences
only the absolute value of the fluxes;

Fitting of the IBEX-Lo data by the model results allows to obtain the best fit parameters p,
and [, for each year separately (by minimization of x2). It is shown that the obtained best fit
parameters are about the same for using of different models of the ISN H distribution;

Results o the fitting are the following:

- In 2009 and 2010 the IBEX-Lo data predict larger p, than it was known before from the
solar Lyman-alpha flux;

- In 2017 the IBEX-Lo data shows a bit smaller p;
-In 2011, 2012, and 2018 an agreement in the obtained and known b, is quite good;

- for all years besides 2012 an agreement of the obtained 3, with the total ionization rate
known before is very good; difference in 2012 could be due to some calibration issue;

For the future perspective we hope that the IMAP measurements of the ISN H fluxes will
provide more accurate and clear data to obtain advanced scientific results.



