A new theory for energetic electron generation behind dipolarization front

Huishan Fu (符慧山) Beihang University

huishanf@gmail.com

Co-authors: Mingjie Zhao, Yue Yu, Zhe Wang

Dipolarization front

Magnetotail dipolarization fronts and particle acceleration:A reviewFu+, 2020, Sci. China Earth Sci.

Huishan FU^{1*}, Elena E. GRIGORENKO², Christine GABRIELSE³, Chengming LIU¹, San LU³, K. J. HWANG⁴, Xuzhi ZHOU⁵, Zhe WANG¹ & Fang CHEN¹

Electron acceleration at DF

Classical theory:

Novel observation by MMS

Novel observation by MMS

New theory

Magnetic bottle

- Time-varying belly
- Steady neck

$$u = \frac{mV_{\perp}^2}{2B} \text{ remains constant}$$
$$\frac{V_{\perp b}^2}{B_b} = \frac{V_{\perp n}^2}{B_n}$$
$$\frac{V_{\perp b}^2}{V_b^2} = \frac{B_b}{B_n}$$

- Loss cone: $\sin \alpha \propto \sqrt{B_b}$
- B increase → Large loss cone →
 Flux decrease
- B decrease → Small loss cone →
 Flux increase

Size: *L*=2-3 RE

Confirmation by four MMS

Implication

Why energetic electrons only appear in half the DF events?

Implication:

- DF events with energetic electrons \rightarrow fat DFB
- DF events without energetic electrons \rightarrow slim DFB

Conclusions

- 1. Electron fluxes increase at B-minimum but decrease at B-maximum
- 2. This challenges the classical theory and thus requires new explanation
- 3. Our new theory includes a magnetic bottle with time-varying belly

Geophysical Research Letters

RESEARCH LETTER 10.1029/2019GL086790 Key Innets: • The and the electron fluxes increase and the and th

A New Theory for Energetic Electron Generation Behind Dipolarization Front

H. S. Fu¹ ⁽⁰⁾, M. J. Zhao¹, Y. Yu¹, and Z. Wang¹ ⁽⁰⁾

¹School of Space and Environment, Beihang University, Beijing, China

Abstract A long-standing problem concerning dipolarization front (DF) is why energetic electrons only appear in half the DF events? By analyzing MMS measurements, here we answer this question. We find a DF structure, behind which energetic-electron fluxes are modulated by magnetosonic waves: At wave troughs (B-minimum) electron fluxes are high; at wave crests (B-maximum) electron fluxes are low. This phenomenon challenges the classical theory of betatron mechanism, so we need to propose a new theory to explain it. In our theory, there exists a magnetic bottle with time-varying belly but steady neck behind the DF. When the belly expands, a magnetic bottle is formed, and electrons are trapped; when the belly contracts, the magnetic bottle disappears, and electrons are expelled. Quantitatively, we validate the existence of this bottle and estimate its size as $2-3 R_E$. Our theory can explain both the presence and absence of energetic electrons behind DFs.