

May 6th 2020 / Session HS - 4.1 Flash floods and rainfall induced hydro-geomorphic hazards: from observation to forecasting and warning

Characterisation of the flood response to the Vaia storm (October 27-30, 2018) in the Eastern Italian Alps.

Mattia Zaramella¹, Lorenzo Marchi², Francesco Marra³, Francesco Comiti⁴, Stefano Crema², Mattia Marchio⁵, and Marco Borga¹

¹ Department of Land, Environment, Agriculture and Forestry, University of Padova, Legnaro, Italy ² CNR-IRPI, Padua, Italy

³ Institute of Earth Sciences, The Hebrew University of Jerusalem Edmond J. Safra Campus, 91904, Jerusalem – Israel

₄Facoltà di Scienze e Tecnologie, Università di Bolzano, Bolzano, Italy ₅Atmospheric Physics Group - DICAM - University of Trento

OBJECTIVES

Between the morning of 27 October 2018 and the evening of 29 October 2018, heavy precipitation over the Eastern Italian Alps led to damaging flooding.

- to investigate the impact of the stationary convective bands, and
- to examine the impact of the rainfall hiatus,

on the flood response to the storm.

The availability of high-resolution rainfall estimates from weather radar and of dense rain gauge network data, along with flood response observations from stream gauge data and post-event surveys, enables to study the hydrometeorological and hydrological mechanisms associated with this extreme storm and the consequent flood response.

CORDEVOLE RIVER BASIN @ PONTE MAS (704 KM²)

ID	Descr.	AREA [km²]
1	Cordevole at Ponte Mas	704.49
2	Cordevole at Saviner	109.36
3	Fiorentina at Sottorovei	58.14
4	Corpassa	24.45
5	Cordevole at Renaz	27.63
6	Biois a Falcade	50.47
7	Liera at Canale d'Agordo	37.71
8	Pettorina at Saviner	54.46
9	Tegnas a Taibon	48.92
10	Mis reservoir	107.17

THE VAIA STORM – CONVECTIVE BAND/ RAINFALL HIATUS

CORDEVOLE BASIN – CHARACTERIZATION OF THE GEOLOGY

Italian Dolomites, characterised by widespread karst features. Spatial distribution of permeability:

- Class I low permeability
- Class II medium-low permeability
- Class III medium-high permeability
- Class IV high permeability

Strong North-South gradient in permeability derived by geolithologic information

SPATIALLY DISTRIBUTED MODELLING APPROACH - KLEM

$$S(t) = \bar{C} \cdot \left[1 - \left(\frac{C_{max} - C^*(t)}{C_{max}} \right)^{b+1} \right]$$

MODELLING APPROACH

• Spatial distribution of the maximum capacity depending on geo-lithology. $\bar{C} = S_{max} = \frac{C_{max}}{b+1}$

• Surface runoff propagation. $q_e(t) = \int_A p_e[t - \tau_{corr}(x), x] dx$

• Groundwater percolation.
$$d_i = \frac{1}{K_r} (S(t) - S_t)^{b_r}$$
,

• base flow model
$$q_b = k_{gw} S_{gw}(t)^3$$

$$f(t) = MF \cdot (T(t) - T_b)$$
$$f(t) = \left(\frac{p_l(t)}{cost} + RMF\right) \cdot (T(t) - T_c)$$

• Snowpack routine

MODEL PARAMETER UNCERTAINTY ASSESSMENT -GLUE

GLUE key parameters:

- 1. X_0 , a multiplier of maximum capacity C_{max} ;
- *2. b*, the exponent of the Pareto function;
- 3. S_t , the storage threshold triggering the groundwater recharge;
- 4. b_r , the groundwater recharge exponent;
- 5. K_r , the groundwater recharge constant.

- Ensembles of 2000 simulations for 9 basins.
- Model parameters were conditioned the Cordevole at Saviner and Ponte Mas basins according to the condition of average NSE>0.70, yielding 3280 behavioural parameterizations.
- Model uncertainty is represented by the 5th and the 95th percentiles of the behavioural simulated runoff.

MODEL APPLICATION

Post – flood peak assessment: Uncertainities of post-flood estimates according to Amponsah et al. (2016)

Basin	Q _{obs} [m³/s]	A [km²]	q _{obs} [m³s⁻ ¹km²]
Ponte Mas	1200	704	1.7
Pettorina	132 (101-163)	54	2.4
Fiorentina	100	58	1.8
Cordevole a Renaz	56 (52-60)	28	2.0
Cordevole a	156	110	1.4
Saviner			
Biois a Falcade	150 (115-185)	52	2.9
Tegnas	154 (134-167)	49	3.1
Liera	91 (81-101)	38	2.4
Corpassa	53	25	2.1

MODEL APPLICATION – SIMULATED VS OBSERVED

- Observed uncertainty: from measuring error or post-event estimate
- Simulated uncertainty: 5th-95th percentile of the simulated discharge

MODEL APPLICATION – SIMULATED VS OBSERVED

- Observed uncertainty: from measuring error or post-flood estimate
- Simulated uncertainty: 5th-95th percentile of the simulated discharge

THE VAIA STORM - FLOOD RESPONSE

Role of rainfall hiatus on flood response

Cordevole at Ponte Mas:

- 12 hours anticipation of the second event
- Negligible impact on peak flow

CONCLUSIONS

- Convective band characterization (and radar observations) is crucial for the simulation of the peak flow.
- Geology-based classification provides a simple and effective representation of soil permeability and capacity.
- Flood response modelling confirms post flood peak assessment (at least for the upper Cordevole basin).
- Rainfall hiatus has a negligible impact on runoff peak.