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OBJECTIVES

Between the morning of 27 October 2018 and the evening of 29 October

2018, heavy precipitation over the Eastern Italian Alps led to damaging

flooding.

- to investigate the impact of the stationary convective bands, and

- to examine the impact of the rainfall hiatus,

on the flood response to the storm.

The availability of high-resolution rainfall estimates from weather radar

and of dense rain gauge network data, along with flood response

observations from stream gauge data and post-event surveys, enables to

study the hydrometeorological and hydrological mechanisms associated

with this extreme storm and the consequent flood response.



CORDEVOLE RIVER BASIN @ PONTE MAS (704 KM2)

ID Descr.
AREA 
[km2]

1
Cordevole at
Ponte Mas

704.49

2
Cordevole at
Saviner

109.36

3
Fiorentina at
Sottorovei

58.14

4 Corpassa 24.45

5
Cordevole at
Renaz

27.63

6 Biois a Falcade 50.47

7
Liera at Canale 
d’Agordo

37.71

8
Pettorina at
Saviner

54.46

9 Tegnas a Taibon 48.92

10 Mis reservoir 107.17



THE VAIA STORM – CONVECTIVE BAND/ RAINFALL HIATUS



Italian Dolomites, characterised by 
widespread karst features.
Spatial distribution of permeability:

• Class I – low permeability
• Class II – medium-low 

permeability
• Class III – medium-high 

permeability
• Class IV – high permeability

Strong North-South gradient in 
permeability derived by geo-
lithologic information

CORDEVOLE BASIN – CHARACTERIZATION OF THE GEOLOGY



SPATIALLY DISTRIBUTED MODELLING APPROACH - KLEM
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Spatial probability distribution of the
soil retention capacity according to
the Pareto function

Spatially distributed version of the Probability
Distributed Model (PDM - Moore, 2007)
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• Spatial distribution of the maximum 
capacity depending on geo-lithology.

• Surface runoff propagation.

• Groundwater percolation.

• base flow model

• Snowpack routine

MODELLING APPROACH



MODEL PARAMETER UNCERTAINTY ASSESSMENT -
GLUE

GLUE key parameters:

1. 𝑋0, a multiplier of maximum capacity 𝐶𝑚𝑎𝑥;
2. 𝑏, the exponent of the Pareto function;
3. 𝑆𝑡, the storage threshold triggering the groundwater recharge;
4. 𝑏𝑟, the groundwater recharge exponent;
5. 𝐾𝑟, the groundwater recharge constant.

• Ensembles of 2000 simulations for 9 basins.
• Model parameters were conditioned the Cordevole at Saviner and Ponte Mas basins according to 

the condition of average NSE>0.70, yielding 3280 behavioural parameterizations.
• Model uncertainty is represented by the 5th and the 95th percentiles of the behavioural simulated

runoff.



MODEL APPLICATION

Basin Qobs [m3/s] A [km2] qobs [m3s-

1km2]
Ponte Mas 1200 704 1.7

Pettorina 132 (101-163) 54 2.4

Fiorentina 100 58 1.8

Cordevole a Renaz 56 (52-60) 28 2.0

Cordevole a 

Saviner

156 110 1.4

Biois a Falcade 150 (115-185) 52 2.9

Tegnas 154 (134-167) 49 3.1

Liera 91 (81-101) 38 2.4

Corpassa 53 25 2.1

Post – flood peak assessment:
Uncertainities of post-flood estimates according
to Amponsah et al. (2016) 



MODEL APPLICATION – SIMULATED VS OBSERVED

• Observed uncertainty: from measuring error or post-event estimate
• Simulated uncertainty: 5th-95th percentile of the simulated discharge



MODEL APPLICATION – SIMULATED VS OBSERVED

• Observed uncertainty: from measuring error or post-flood estimate
• Simulated uncertainty: 5th-95th percentile of the simulated discharge



THE VAIA STORM - FLOOD RESPONSE



Cordevole at Ponte 
Mas: 
- 12 hours 

anticipation of the 
second event

- Negligible impact 
on peak flow

Role of rainfall hiatus on flood response



CONCLUSIONS

• Convective band characterization (and radar observations) is crucial
for the simulation of the peak flow.

• Geology-based classification provides a simple and effective
representation of soil permeability and capacity.

• Flood response modelling confirms post flood peak assessment (at
least for the upper Cordevole basin).

• Rainfall hiatus has a negligible impact on runoff peak.


