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Research Objective SO NENEES I C

Can we detect and attribute anomalous events based on the analysis of
changes in the causal effect relationships?

Event Detection in Ecological Time Series [4]

How ecosystem functioning is affected during unusual hydro-meteorological conditions?
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the months of August in years 2001-2013. The peak in year 2003 is due to

coherence of sea level pressure the 2003 summer heatwave in France.
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Challenges in Causality Analysis — Assumptions/methods
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During the heatwave of August 2003 in France, we can notice deviation of the causal effect intensities (blue solid line)
' from to the average ones of similar summer period within years 2001-2013 (red dashed line): clear increase in the
! causal intensity of VPD on NEE at the low frequency range (long term change) pointing towards an increase in water
1 stress on ecosystem functioning; Note also the increased effect of T on VPD as short term change (high fregs.). The
. threshold for statistical significance estimated using permutation test and the FT surrogate test is shown in the
' dashed-dotted line and gray area respectively.

= Nonstationary — sliding time window/adaptive system

= Presence of periodic components — frequency domain analysis

= Multi-scale cause effect relations — time-frequency analysis

= Nonlinearity — separability of cause and effect, no prior assumption
on the linearity of the cause-effect relation.

= Presence of hidden cofounders ~ — assume no hidden cofounders

Event Detection in Marine Climate Time Series [4}
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The time series of the N environmental variables are represented by a p™ order Vector
Autoregressive (VAR) model:
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Change in causal effect intensities

Variables:
[ 1 ) _ ) ] i il - - Sea level pressure (SLP o2
z1(n) y z1(n —r) €1(n) a11(r) ... ain(r) o ey P :
— Z A’r _|_ Ar — Wave height (HS) ° 2012-07 2012-08  2012:09 2012-10 2012-11
pie Changes in the causal effect intensities. For the time-frequency analysis using
_xN(n> | _CUN(n — 7“) | | EN (n) 1 L AN1 (r) ... ann(r) d the gPDC, the high change values correlate better with the three hurricanes

, . , _ when compared to time domain VAR-GC.
The causal relation from x. to X, conditioned on other variables is [1][2]
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The causal relation from x. to x. is described in the freq. domain via the gPDC [3]: Y e R e -
o _ T8 4 1 s
iy A(f) =1 — A(f) > Uk LR TR RIVAVNEER 71"
O s ] (f) 0 2 0 2 0 2 0 2
gﬂ-z—)J (f) — JJ p normalised frequency normalised frequency normalised frequency normalised frequency
— ) . —r
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<k=1 0Lk 1 .average causal intensities (red dashed line). The threshold for statistical significance estimated using permutation

\test and the FT surrogate test is shown in the dashed-dotted line and gray area respectively. Note the increased effect of
'SLP on W, the sharp peak corresponds to the semi-diurnal cycle of the atmospheric pressure.

Conclusions & Future Work
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