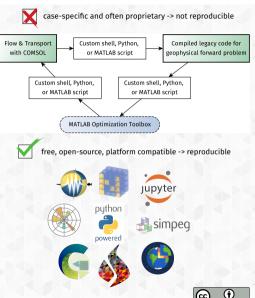
Open-source hydrogeophysical modeling and inversion with pyGIMLi 1.1

Recent advances and examples in research and education

Florian Wagner¹, Carsten Rücker^{2,*}, Thomas Günther³, Friedrich Dinsel², Nico Skibbe³, Maximilian Weigand⁴, and Joost Hase⁴

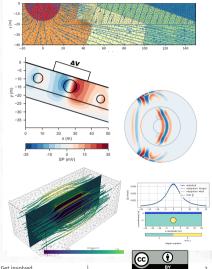
May 7, 2020

¹RWTH Aachen University, Applied Geophysics and Geothermal Energy, Aachen, Germany
 ²Berlin University of Technology, Department of Applied Geophysics, Berlin, Germany
 ³Leibniz Institute for Applied Geophysics (LIAG), Hannover, Germany
 ⁴University of Bonn, Institute of Geosciences, Section Geophysics, Bonn, Germany
 * now at: Federal Office for the Safety of Nuclear Waste Management, BASE, Berlin, Germany



A Computational hydrogeophysics is currently not reproducible

- In hydrogeophysics, researchers gain quantitative information on the subsurface by studying the dynamic process of interest together with its geophysical response.
- This requires coupling of different numerical models → obstacle for many practitioners and students.
- Even technically versatile users tend to build individually tailored solutions by coupling different (and often proprietary) forward simulators.
- The lack of reproducibility represents an impediment for the advancement of hydrogeophysics.


pyGIMLi: An open-source library for modelling and inversion in geophysics

- management of structured and unstructured meshes in 2D & 3D
- computationally efficient finite-element and finite-volume solvers
- various geophysical forward operators: ERT/IP, Traveltime, Gravimetry, SP
- · Gauss-Newton based frameworks for constrained, joint and process-based inversions with region-specific regularization
- offers opportunities for hydrogeophysical modeling and inversion
- open-source, platform compatible, documented & tested code
- well suited for teaching & reproducible research
- 1.0 version published in 2017 in Computers and Geosciences [4] (and among the Most Downloaded & Most Cited papers)

Examples

Geostatistical regularization

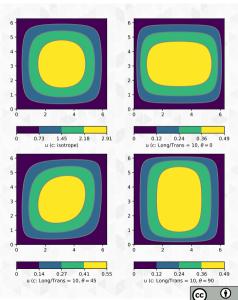
loint inversion

3D Viewer Education Get involved

pyGIMLi 1.1: So what's new?

- ERT Manager with full functionality and improved accuracy of traveltime calculations [1]
- Anisotropic parameters
- · Simulation of electrical streaming potentials
- Complex-valued electrical forward modeling
- · Geostatistical regularization operators for unstructured meshes [2]
- Petrophysical joint inversion [6]
- Built-in 3D visualization leveraging upon PyVista [5]
- One-line installation on Windows, Mac & Linux (www.pygimli.org/installation.html)
- Improved website & documentation: New examples (e.g., on hydrogeophysical modeling and IP forward modeling), better API documentation, modern CSS framework, and a searchable database with 40+ peer-reviewed pyGIMLi-based publications: www.pygimli.org/publist.html

Support for anisotropic parameters


Theory

Finite-element solver allows for more flexible parameter *a* in: $\nabla \cdot (a \nabla \varphi) = f$

a can be float, complex or an anisotropy or constitutive matrix

import pygimli as pg mesh = pg.meshtools.createGrid(10, 10) a = pg.solver.anisotropyMatrix(lon=1.0, trans=10.0, theta=45/180 * np.pi) u = pg.solve(mesh, a=a, f=f, bc={'Dirichlet': {'*': 0}})

Example in finite-element tutorial

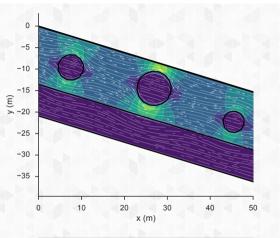
Anisotropy

Education (

Example: Simulating electrical streaming potentials

Theory

 $\nabla \cdot (\sigma \nabla \varphi) = \nabla \cdot (\frac{Q_v}{S_w} \mathbf{v})$ with $\mathbf{v} = -K \nabla h$


Divergence of water flow acts as electric current source if pore water is in contact with electrically charged interfaces

from pygimli.solver import solve, grad

Flow problem

Anisotropy

h = solve(mesh, a=K, uB=bc) # hydraulic head (m) v = -K * grad(mesh, h) # Darcy velocity (m/s) pg.show(mesh, v)

pyGIMLi

Joint inversion

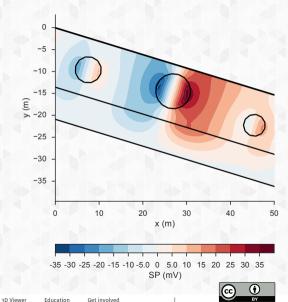
3D Viewer

Education Ge

Example: Simulating electrical streaming potentials

Theory

 $\nabla \cdot (\sigma \nabla \varphi) = \nabla \cdot (\frac{Q_v}{s} \mathbf{v})$ with $\mathbf{v} = -K \nabla h$


Divergence of water flow acts as electric current source if pore water is in contact with electrically charged interfaces

from pygimli.solver import solve, div

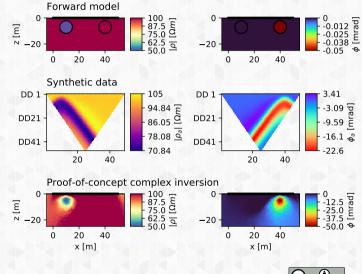
Electrical problem

sources = div(mesh, coupling_coefficient * v) SP = solve(mesh, a=sigma, f=sources, uB=ertbc) pg.show(mesh, SP)

Geostatistical regularization

nvGIMI i

Anisotropy


Towards complex inversion of spectral induced polarization data

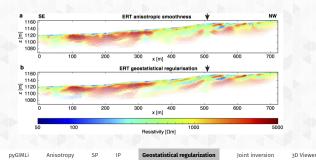
- Complex-valued electrical forward modeling and sensitivity calculation is supported
- Modeled transfer impedances and complex sensitivity values in good agreement to CRTomo [3].
- Inversion not yet fully integrated in new frameworks, but proof-of-concept complex inversion available

Complex-valued modeling example Preliminary inversion example

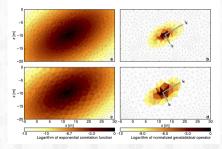
SP

Anisotrony

Joint inversion


Education Get

Geostatistical regularization operators (Jordi et al., 2018) [2]


Key points

- regularization becomes mesh-independent
- larger footprint reduces dependence on survey geometry
- can be used as the basis for structural coupling

$$\mathbf{C}_{\mathrm{M},ij} = \sigma^{2} \exp\left(-3\sqrt{\left(\frac{\mathbf{H}_{x,ij}}{l_{x}}\right)^{2} + \left(\frac{\mathbf{H}_{y,ij}}{l_{y}}\right)^{2} + \left(\frac{\mathbf{H}_{z,ij}}{l_{z}}\right)^{2}}\right)$$

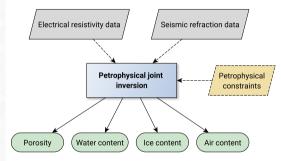
$$\begin{pmatrix} \mathbf{H}'_{x} \\ \mathbf{H}'_{z} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \mathbf{H}_{x} \\ \mathbf{H}_{z} \end{pmatrix}$$

Click here to view example

Education

Get involved

7


 $(\mathbf{\hat{H}})$

Petrophysical joint inversion

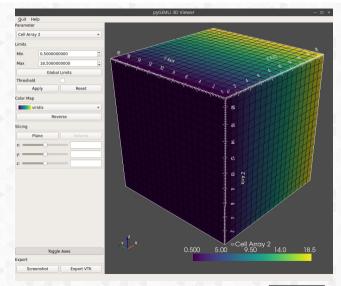
- Different Method Managers (e.g., ERT and TravelTime) can be combined to estimate petrophysical quantities
- Arbitrary petrophysical models can be used
- Sensitivities are scaled with regard to the petrophysical models
- Allows to incorporate constraints on the petrophysical target parameters (i.e., include soil moisture measurements in the inversion)
- For details see examples linked to the right and Wagner et. al, GJI, 2019 [6]

Joint inversion for water, ice, and air

Petrophysical Joint inversion for water saturation Petrophysical Joint inversion for four phases

3D Viewer Education

Built-in pyVista-based 3D viewer



Features

- Supports arbitrarily complex 3D meshes
- Intuitive GUI to adjust colors and perform slicing
- VTK export (e.g., for ParaView)
- also works in Jupyter Notebooks

Example

```
import pygimli as pg
n = 20
mesh = pg.meshtools.createGrid(n, n, n)
data = pg.x(mesh.cellCenters())
pg.show(mesh, data)
```


pvGIMLi Anisotropy

SP IP Geostatistical regularization

tion Joint inversion

Education

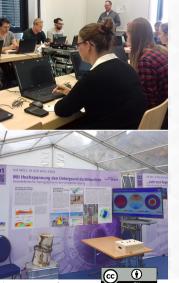
3D Viewer

tion Get involved

Teaching & Outreach

pyGIMLi

Anisotropy


- pyGIMLi is well suited for teaching in conjunction with Jupyter Notebooks (www.jupyter.org)
- Different abstraction levels (equation vs. application level) allow for tailored exercises at Bachelor and Master level
- Used in classes at several (inter)national universities
- Centralized installations (JupyterHub) allow large numbers of students to participate with a web browser only
- Was used to interactively illustrate electrical imaging of trees at "Highlights der Physik" in Bonn in September 2019

loint inversion

3D Viewer

Geostatistical regularization

Get involved

Education

PyGIMLi is open-source and welcomes new contributors

Ways to contribute to the project

- 1. If you used pyGIMLi for your work, add yourself to this table.
- 2. If you experience issues or miss a certain feature, please open a new issue on GitHub.
- 3. Send an interesting usage example to mail@pygimli.org
- Contribute to the code as explained here.

B Giroux and B Larouche

Task-parallel implementation of 3D shortest path raytracing for geophysical applications.

Computers and Geosciences, 54(0):130-141, 2013.

C. Jordi, J. Doetsch, T. Günther, C. Schmelzbach, and J. O. Robertsson. Geostatistical regularization operators for geophysical inverse problems on irregular meshes.

Geophysical Journal International, 213(2):1374–1386, 2018.

A. Kemna.

1

Tomographic inversion of complex resistivity – theory and application. PhD thesis, Ruhr-Universität Bochum, 2000.

C. Rücker, T. Günther, and F. Wagner.

pygimli: An open-source library for modelling and inversion in geophysics. Computers and Geosciences, 109:106–123, 2017.

C. Sullivan and A. Kaszvnski.

PvVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK).

Journal of Open Source Software, 4(37):1450, 2019.

Quantitative imaging of water, ice, and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data. Geophysical Journal International, 219(3):1866-1875, 2019.

nvGIMI i Anisotropy SP ID Geostatistical regularization loint inversion

3D Viewer Education