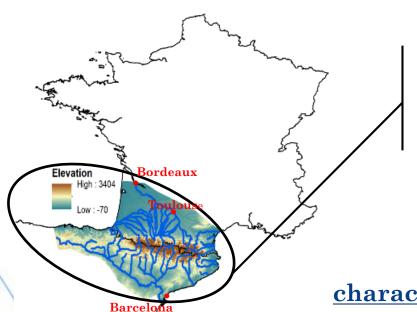
European Geosciences Union - General Meeting 2020

Better understand mountain hydrology to enhance climate change impact assessment

Youen Grusson¹, Manon Dalibard¹, Mélanie Raimonet¹, Sabine Sauvage¹, Gaël Le roux¹, Santiago Begueria², Leticia Palazon², Père Quintana-Segui³, Pierre Le Cointe⁴ and José Miguel Sánchez Pérez¹

¹ECOLAB, Toulouse University, CNRS, INPT, UPS, Toulouse, France

²Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC)


³Observatori de l'Ebre, Consejo Superior de Investigaciones Científicas (OE-CSIC)

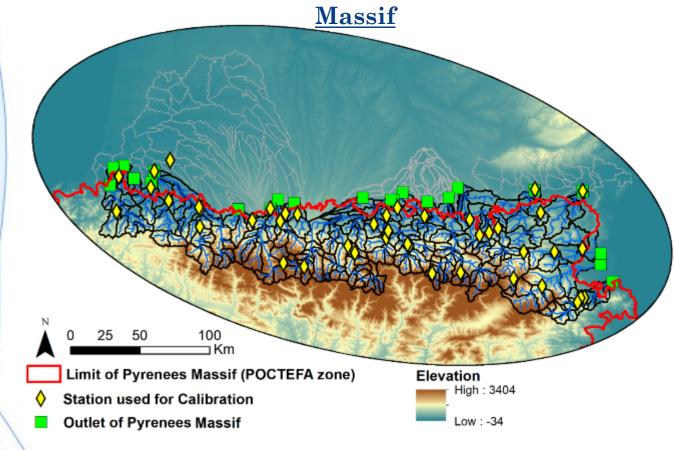
⁴Bureau de Recherches Géologiques et Minières (BRGM)

Mountains are the water tower of the world

"[..] the most important water towers are also among the most vulnerable, and climatic and socio-economic changes will affect them profoundly. This could negatively impact 1.9 billion people living in (0.3 billion) or directly downstream of (1.6 billion) mountainous areas. Immediate action is required to safeguard the future of the world's most important and vulnerable water tower"

After: "Importance and vulnerability of the world's water towers" 2020, Immerzeel et al. Nature 577

The Pyrenean Massif is a key regulator into the water supply mechanisms for a large region in France and Spain which include some major cities such as Toulouse, Bordeaux or Barcelona



PIRAGUA Project:

characterization of the water resources of the Pyrenees

- How climate change will impact the water yield delivered by the mountainous area to the plain downstream?
- o How climate change will impact the repartition spatial and temporal between the different fluxes and stocks within the water cycle?

The Soil and Water Assessment tool over the Pyrenean

Data	Source	Resolution		
Type	Туре		Time	
DEM	Shuttle Radar Topography Mission (Jarvis et al. 2008)	~90 m	2009	
	European Digital Elevation Model version 1.1 (https://land.copernicus.eu/imagery-in-situ/eu- dem/eu-dem-v1.1?tab=mapview)	~25 m	2011	
I J	Corine Land Cover 2012 (France-Spain) (Büttner et al. 2014)	100 m	2012	
Land Uses	Mapa de Cobertes del Sòl d'Andorra (www.iea.ad/mapa-de-cobertes-del-sol-d-andorra- 2012)	250 m	2012	
Soils	Harmonized world soil database (Nachtergaele et al.2008; Wiederet al. 2014)	~1 km	2012	
Weather	SAFRAN/PIR1 (Quintana-Seguí et al. 2017, 2016)	~2.5 km	Diario (1979- 2014)	
Discharge	Banque Hydro (www.hydro.eaufrance.fr/)	Vectorial	diario	

Calibration and validation:

5 SWAT project for each watershed 43 stations into the mountainous area.

Calibration at monthly time step conducted with SWAT-Cup with KGE as objective function over the period 1986-2005 (+5yrs of warmup)

Validation over the period 2006-2013

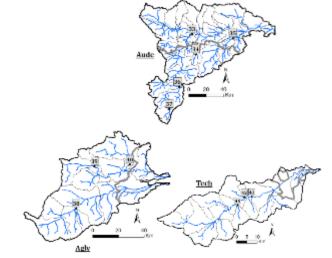
Analyzed output:

- 1) Discharge at 19 outlets of the Pyrenean Massif to get an integrative view of water resources "produced".
- 2) Distribution of the water with the mountainous area between SnowPack/Snow Melt/Evapotranspiration/WaterYield

The Soil and Water Assessment tool over the Pyrenean Massif: Performances

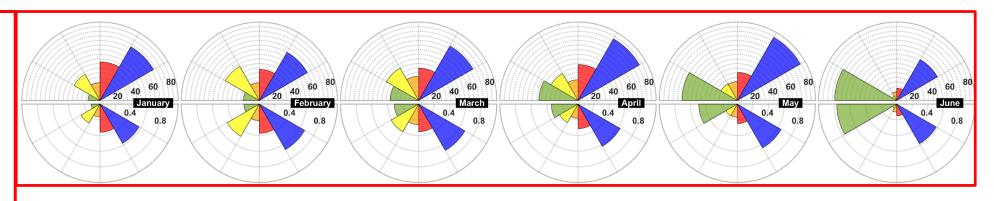
<u>Calibration:</u> all stations have a KGE (scaled inspired by Gupta et al. 2009) good (blue) or very good (green). Lower score for 5 stations with only acceptable performances (Orange). NSE (scale from Moriasi et al. 2007) show also very good to acceptable results, but 3 stations have unsatisfactory performance (Red) unless their KGE scores are ranked as good.

<u>Validation:</u> The overall performance of the model is little degraded over the calibration period. Only one station return a KGE and NSE unsatisfactory. Two of the station with unsatisfactory. NSE in calibration shows good performance in validation and 2 stations pass from satisfactory to unsatisfactory result. This show the relative robustness of the model over the massif.

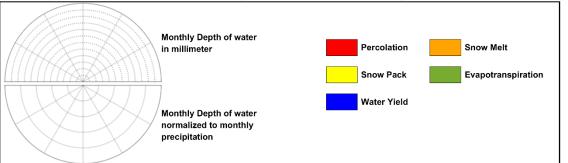

			Calibration		Validation	
Watershed	Station	Id. Station	1986-2005		2006-2013	
			KGE	NSE	KGE	NSE
	1	Q9164610	0.81	0.82	0.90	8.0
	2	Q8345910	0.57	0.50	0.72	0.71
	3	Q8032510	0.78	0.86	0.77	0.82
	4	Q7412910	0.76	0.78	0.80	0.77
Adour	5	Q5501010	0.71	0.59	0.85	0.78
	6	Q7322510	0.64	0.63	0.84	0.73
	7	Q7002910	0.81	0.68	0.80	0.68
	8	Q6142910	0.69	0.43	0.64	0.49
	9	Q6332510	0.72	0.58	0.65	0.52
	10	Q4801010	0.70	0.40	0.71	0.65
	11	Q0214010	0.60	0.57	0.74	0.73
	12	Q0115710	0.80	0.59	0.50	0.27
	13	Q0554010	0.53	0.58	0.74	0.76
	14	Q0522520	0.89	0.84	0.88	0.81
	Average		0.72	0.63	0.75	0.68

			1986-2005		2006-2013	
Watershed	Station	Id. Station				
			KGE	NSE	KGE	NSE
	15	00105110	0.73	0.78	0.47	0.62
	16	00126210	0.73	0.58	0.71	0.64
	17	00010040	0.75	0.57	0.74	0.65
	18	00015310	0.60	0.56	0.66	0.62
	19	00554010	0.80	0.74	0.85	0.75
	20	00584310	0.89	0.86	No L	Data
	21	00485110	0.47	0.51	0.19	0.24
	22	O1432930	0.47	0.52	0.48	0.56
	23	00624010	0.91	0.89	0.93	0.87
Garonne	24	00362510	0.67	0.53	0.66	0.60
	25	00384010	0.67	0.65	0.77	0.70
	26	00744030	0.77	0.76	0.78	0.79
	27	01115010	0.89	0.86	0.81	0.80
	28	01076010	0.84	0.82	0.83	0.83
	29	01584610	0.84	0.84	0.82	0.85
	30	01484310	0.63	0.61	0.58	0.56
	31	01442910	0.88	0.76	0.81	0.69
	32	01464010	0.77	0.85	0.43	0.61
	Av	erage	0.74	0.71	0.68	0.67

	Station	ld. Station	Calibration		Validation	
Watershed			1986-2005		2006-2013	
			KGE	NSE	KGE	NSE
	33	Y1232010	0.85	0.80	0.88	0.81
	34	Y1225010	0.64	0.63	0.47	0.46
Aude	35	Y1564010	0.91	0.82	0.82	0.82
Aude	36	Y1105010	0.82	0.66	0.52	0.52
	37	Y1012010	0.81	0.76	0.68	0.71
	Avr	erage	0.81	0.73	0.67	0.66
	38	Y0436420	0.78	0.60	No	lata
Agly	39	Y0624020	0.65	0.41	0.80	0.72
2.421A	40	Y0655010	0.56	0.58	0.81	0.66
	Ave	erage	0.66	0.53	0.81	0.69
	41	Y0254050	0.83	0.80	No data	
Tech	42	Y0255020	0.75	0.69	0.38	0.60
recii	43	Y0245210	0.79	0.70	0.56	0.73
	Ann	armen	0.79	0.72	0.47	0.67

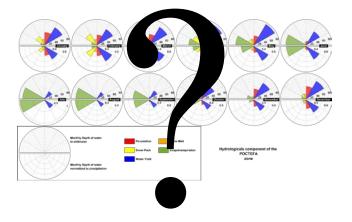



The Soil and Water Assessment tool over the Pyrenean Massif: Preliminary results


Monthly water distribution over the entire mountainous area for the period 1980-2010

During January-March, Snow pack represent 30 to 50% of the monthly precipitation and snow melt favor the infiltration-rechargeprocesses

The role of snowpack is to sustain the recharge and the water yield during the spring / first months of summer



When during July-September, the role of « water tower » of the mountainous area drastically decrease and provide substantially less water to the low land

The Soil and Water Assessment tool over the Pyrenean Massif: The next step

Monthly water distribution over the entire mountains area in the future?

Next step of the Piragua project: Explore the change within the distribution of hydrological component over the next century

Use of projections specially developed for the Pyrenean region through the CLYM'PY project (https://www.opcc-ctp.org/fr/climpy)

References

Abbaspour, K.C., Vejdani, M., Haghighat, S., 2007. SWAT-CUP Calibration and Uncertainty Programs for SWAT. In MODSIM 2007 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand.: 1603-1609.

Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic modeling and assessment part I: model development. Journal of the American Water Resources Association, 34(1): 73-89. DOI:10.1111/j.1752-1688.1998.tb05961.x

Büttner, G.; Kosztra, B. Addendum to CLC2006 Technical Guidelines; Version 2; EEA: Copenhagen, Denmark, 2014

Grusson, Y. et al., 2015. Assessing the capability of the SWAT model to simulate snow, snow melt and streamflow dynamics over an alpine watershed. Journal of Hydrology, 531(3): 574–588. DOI:10.1016/j.jhydrol.2015.10.070

Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1): 80-91. DOI:https://doi.org/10.1016/j.jhydrol.2009.08.003

Jarvis, A., H.I. Reuter, A. Nelson, E. Guevara, 2008, Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database: http://srtm.csi.cgiar.org.

Moriasi N, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, T. L. Veith 2007 Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations Published Transactions of the ASABE. 50(3): 885-900. doi: 0.13031/2013.23153

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(03): 282-290. DOI:10.1016/0022-1694(70)90255-6

Quintana-Seguí, P., Turco, M., Herrera, S., & Miguez-Macho, G.: Validation of a new SAFRAN-based gridded precipitation product for Spain and comparisons to Spain02 and ERA-Interim 2017 Hydrology and Earth System Sciences 21(4), 2187–2201.DOI: 10.5194/HESS-

Quintana-Segui, P., C. Peral, M. Turco, M.C. Llasat, E. Martin 2016, Meteorological analysis systems in north-east Spain. Validation of SAFRAN and SPAN, Journal of Environmental Informatics, 27 (2) 116-130, DOI: 10.3808/jei.201600335

Wieder, W.R.; Boehnert, J.; Bonan, G.B.; Langseth, M. Regridded 2014 Harmonized World Soil Database v1.2. ORNL DAAC: Oak Ridge, TN, USA,

European Geosciences Union - General Meeting 2020

Better understand mountain hydrology to enhance climate change impact assessment

Youen Grusson¹, Manon Dalibard¹, Mélanie Raimonet¹, Sabine Sauvage¹, Gaël Le roux¹, Santiago Begueria², Leticia Palazon², Père Quintana-Segui³, Pierre Le Cointe⁴ and José Miguel Sánchez Pérez¹

¹ECOLAB, Toulouse University, CNRS, INPT, UPS, Toulouse, France

²Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC)

³Observatori de l'Ebre, Consejo Superior de Investigaciones Científicas (OE-CSIC)

⁴Bureau de Recherches Géologiques et Minières (BRGM)