

specMACS Observations during EUREC⁴A

Cloud Droplet Size Distributions (from Observations of Glory and Cloudbow) and Cloudmask

Veronika Pörtge 1 🔽

Tobias Kölling ¹, Tobias Zinner ¹, Linda Forster ^{1,2}, Felix Gödde ¹ and Bernhard Mayer ¹ May 7, 2020

¹Meteorological Institute, Ludwig-Maximilians-Universität München, Germany

² Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

OVERVIEW

How is specMACS designed?

- downward measurements; mounted onboard research aircraft HALO
- two hyperspectral line cameras (400 nm 2500 nm) and two 2D polarization cameras

Which products will be derived from the measurements?

- Identify clouds in the observations (cloudmask) slide 2
 - · cloud detection algorithm based on brightness threshold and water vapor (WV) absorption in the shortwave infrared (SWIR) solar spectrum \rightarrow works also if sunglint present
- Retrieve microphysical parameters sides 3-3
 (polarized) observations of the backscatter glory and the cloudbow depend on effective radius $r_{\rm eff}$ and width σ of cloud droplet size distribution (CDSD)

Which radiative transfer models are used?

- cloudmask: DISORT (included in the libRadtran package)
- CDSD: MYSTIC (included in the libRadtran package,
 - [Mayer and Kylling, 2005, Emde et al., 2016])

CLOUD MASK [GÖDDE, 2018]

Challenges

IMU MIN

- common cloud detection approaches use contrast of bright clouds in front of dark background
- approach fails in the presence of sunglint over ocean (sunglint increases brightness of ocean)

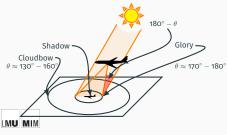
Solution: Use absorption by water vapor!

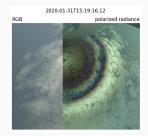
- absorption by WV in the shortwave infrared solar spectrum (SWIR)
- ► no cloud → SWIR radiation reflected from ocean's surface → higher WV absorption than radiation reflected at cloud (due to longer path through the atmosphere and higher WV concentrations near surface)

cloud mask 2020-01-31

©Authors. All rights reserved

CLOUD MICROPHYSICS


Challenges


traditional bi-spectral approaches (e.g., Nakajima-King technique)...

- ... retrieve cloud optical thickness and cloud effective radius
- ... suffer from 3D radiative transfer effects (e.g., shadows)
- … cannot retrieve width of droplet size distribution

Solution: Fit MYSTIC simulations to observations of glory and cloudbow!

Formation: Single scattering by liquid cloud droplets (\rightarrow not affected by 3D effects); scattering angle: θ

visibility of glory and cloudbow in polarized measurements (right) enhanced due to removal of "Auti multiple-scattering background

©Authors. All rights reserved

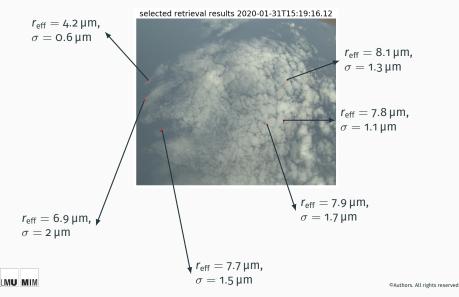
RETRIEVAL

Dependence on cloud droplet size distribution?

- angular radius of glory decreases with effective radius while the radius of the cloudbow increases
- narrow size distribution enhances contrast of the rings (not shown)

cross-section of a backscatter glory (SZA = 10°) effective radius 0.30 backscatte direction Reflectivity optical thickness width of size distribution first rings $\tau = 5$, $r_{eff} = 10 \mu m$, $\sigma = 0.98 \mu m$ 0.00 Viewing zenith angle [degree] ∆z (from Kölling, 2020

Aggregation of observations


- ► observation of same cloud element in successive images → observation from different angles
- necessary: cloud top height (from [Kölling, 2020])

LMU MIM

©Authors, All rights reserved

Results

pre-calculated MYSTIC simulations are fitted to the aggregated observations [Mayer et al., 2004] \rightarrow retrieve $r_{\rm eff}$, σ with a spatial resolution of about 20 m

Thank you and stay healthy!

©Authors. All rights reserved

Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., et al. (2016).

The libRadtran software package for radiative transfer calculations (version 2.0. 1).

Geoscientific Model Development, pages 1647–1672.

Gödde, F. (2018).

Detecting clouds in the presence of sunglint: An approach using spectral water vapor absorption.

Master's Thesis.

Kölling, T. (2020).

Cloud Geometry for Passive Remote Sensing.

PhD thesis.

Mayer, B. and Kylling, A. (2005).

The libRadtran software package for radiative transfer calculations-description and examples of use.

Atmospheric Chemistry and Physics, 5(7):1855–1877.

IMU MIM

Mayer, B., Schröder, M., Preusker, R., and Schüller, L. (2004).

Remote sensing of water cloud droplet size distributions using the backscatter glory: a case study.

Atmospheric chemistry and physics, 4(5):1255–1263.