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O2 provides new opportunities

▪ O2 is closely linked to CO2 at local to 

global scale

▪ but does provide additional information 

about photosynthesis and respiration

O2 : CO2

Photosynthesis 

Respiration

Net exchange

OXYFLUX
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O2 as powerful tool to partition global land and ocean carbon sinks 

Units:  Pg C yr-1

1990-2000 2000-2010

Fossil-fuel emissions: 6.4 ± 0.4 7.8 ±0.5

Atmos. CO2 increase: 3.2 ± 0.0 4.0 ±0.0

Net oceanic sink: 1.9 ± 0.6 2.7 ±0.6

Net land sink: 1.2 ± 0.8 1.1 ±0.8

Keeling and Manning (2014)

ΔCO2 = F – O – L

ΔO2 = -αFF + αLL + Z

Little data on land O2:CO2 exchange ratio

typically assumed to be constant at 1.1

FF

ZLL

O
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Indirect data: Oxidative ratios from organic samples
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Worrall al. 2013

▪ Oxidative ratios of organic material (based on elemental analysis) 

are indirect estimates of long-term O2:CO2 exchange ratios

▪ Considerable variation with global mean probably smaller than 1.1



Challenge I

▪ Very little data exists where direct O2:CO2 flux

measurements are done at field sites

▪ Angert et al. 2015 ➔ O2:CO2 ratio of soil respiration higher than 

1.1

▪ Hilman et al. 2019 ➔ O2:CO2 ratio of stem respiration higher 

than 1.1

▪ Battle et al. 2019 ➔ large variation in O2:CO2 ratio of canopy 

level measurements
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Challenge II : Measuring O2 is difficult

▪ 1 ppm precision out of 210 000 ppm O2 compared to 

1 ppm precision out of 400 ppm CO2

▪ a number of instruments now available but all with their own 

strengths and weaknesses

Custom-made O2 measurement unit 

(UEA) based on fuel cell (Oxzilla, 

Sable Systems)
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Tunable direct absorption 

spectroscopy (Aerodyne Inc.)

Cavity ring down 

spectroscopy (Picarro

Inc.)



Objectives
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Overall objective

To determine the O2:CO2 ratio of gas exchange of a forest ecosystem 

in Germany

Specific objectives

I. To measure the O2:CO2 gas exchange from branches, stems and 

soils using a custom-made fully automated chamber system

II. To measure the O2:CO2 gas exchange of the entire ecosystem 

using canopy air profile measurements and Inverse Lagrangian

modelling



Field site Leinefelde

▪ Fully equipped Fluxnet site (DE-Lnf) 

in Central Germany

▪ Beech monoculture 

▪ Canopy height: 35 m

▪ Age: 140 years
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I. Chambers for ecosystem component measurements
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Known carrier gas
Analyzer unit for O2 and CO2

Precision: 1 ppm O2

0.5 ppm CO2

Measurement mode

Chambers are measured one-

by-one

Gas of known concentration is 

pumped through the chamber 

and concentration changes 

(ΔO2, ΔCO2) are measured

-> Open throughflow steady 

state (see next slide)

Switching Unit

Branch chambers

Stem chambers

Soil chambers

Component fluxes

- Branch

- Stem

- Soil

-> 4 chambers each

Non-measurement mode

Chamber concentrations 

are kept at constant level 

close to ambient 

concentration in between 

measurements



Open throughflow steady state chambers
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ChamberFlow F 
cin

Flow F
cin + Δc

Observed 
compartment

E
U

At steady state (i.e. stable cin+Δc):

Net gas exchange = Δc x F

After starting measurement of a chamber we 

have to wait until steady new [O2] and [CO2] 

and then measure the change (ΔO2, ΔCO2) 

relative to the carrier gas concentration



Interpreting ΔO2 and ΔCO2

• ΔO2 and ΔCO2 can be used to calculate the current 

exchange rates (i.e. calculate the fluxes)

• Alternatively, the ratio (- ΔO2 / ΔCO2) can be 

calculated. For anti-correlated fluxes of the same 

magnitude, this ratio would be 1.0, which usually is 

expected for assimilation and for respiration of 

carbohydrates 

• A ratio different than 1.0 can be due to

a. Respiratory substrates other than carbohydrates

b. Alternative sources/sinks for CO2/O2

c. Measurement artifacts (technical problems) 
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ΔO2 ~ ΔCO2 by chamber location
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VICI 8 port selector

purge pump

• high-frequency turbulence profile measurements with 

YOUNG 81000VRE

• all tubes ¼ OD Synflex 1300, same length (50 m)

• all inlets aspirated Stevenson huts

• gas selection through constant flow VICI 8 port valve

• each port is continuously sampled @ 1slpm by purge 

pump

• selected port is sampled @ 1slpm by vacuum pump

• switching increment 5 min

• O2 signal stabilization in < 1 min

• coupled O2, CO2 measurements @ 2Hz in Aerodyne QCL-

TILDAS

II. Setup Canopy profile
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SOIL CANOPY

▪ O2 measurements precise enough to 

resolve soil respiration gradient at night.

▪ standard error on 4 min mean ±0.5 ppm.

▪ standard deviation ±11 ppm.

Vertical O2 profile

Vertical CO2 profile

O2 : CO2 ratio

One vertical profile over 30 min
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Ecosystem-scale O2:CO2 exchange ratio close to 1.1

n = 3 

days

median    1.07

▪ Night-time data, 3 days in April, before leaf 

emergence.

▪ mostly soil respiration signal.

▪ measured exchange ratio is statistically 

not different from -1.1.

▪ However, this ratio is purely based on 

concentration measurements that might 

not be fully representative of forest 

ecosystem.

▪ next task: inverse ecosystem-scale flux 

calculation based on concentration- and 

turbulence profile

▪ requires vertical profile of turbulence 

measurements



Vertical turbulence measurements
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▪ Mechanical turbulence (u*) decreases inside the canopy 

as expected from theory

Next steps:

▪ use near-/far-field Lagrangian particle framework

▪ inferred by measured turbulence 𝑢∗ 𝑧 and O2 and CO2

concentration profile 𝐶 𝑧

▪ Inversely solve for vertical source distribution profile 

𝑆 𝑧 : sinks and sources of O2 and CO2 inside canopy

▪ derive the net ecosystem flux of O2 and CO2

0 =
𝑧
𝑆 𝑧 , 𝑑𝑧

▪ compare 𝑆 𝑧 of O2 and CO2 with compartment-scale 

chamber flux measurements 
turbulence profile (u*)

before leaf emergence
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Summary

▪ Fully automated chambers and profile systems for 

measurements of O2:CO2 gas exchange developed

▪ Instrument precision sufficient to resolve small variations 

in O2:CO2 gas exchange

▪ Preliminary results indicate average O2:CO2 close to 1.1 

but with considerable temporal and spatial variation 
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