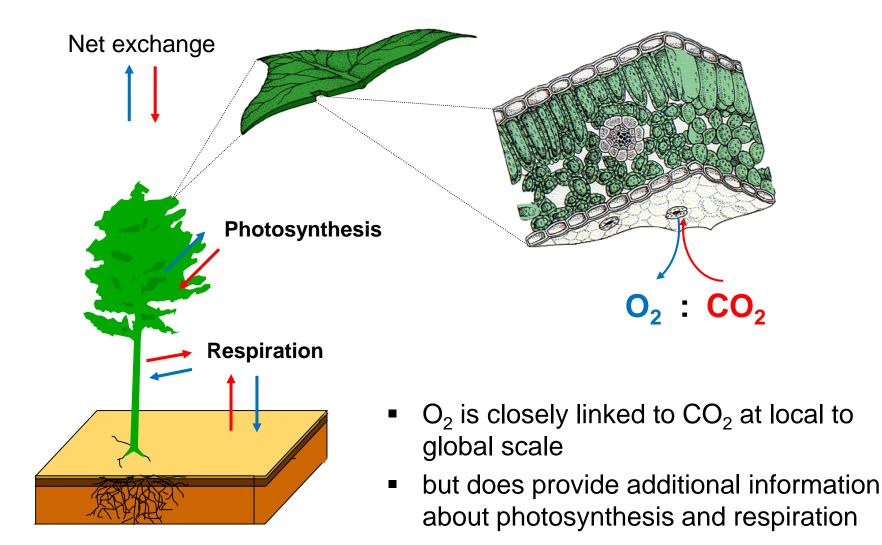
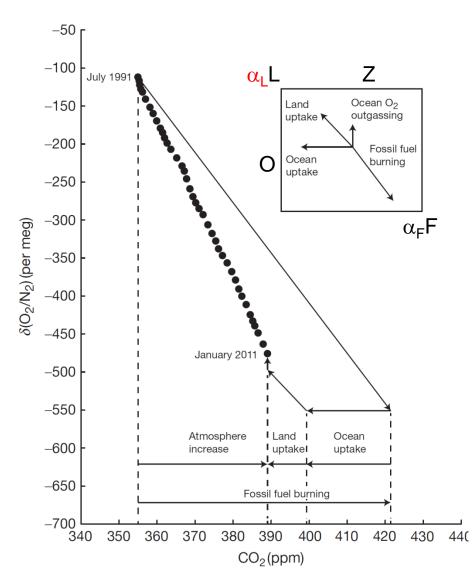


D486 | EGU2020-18822

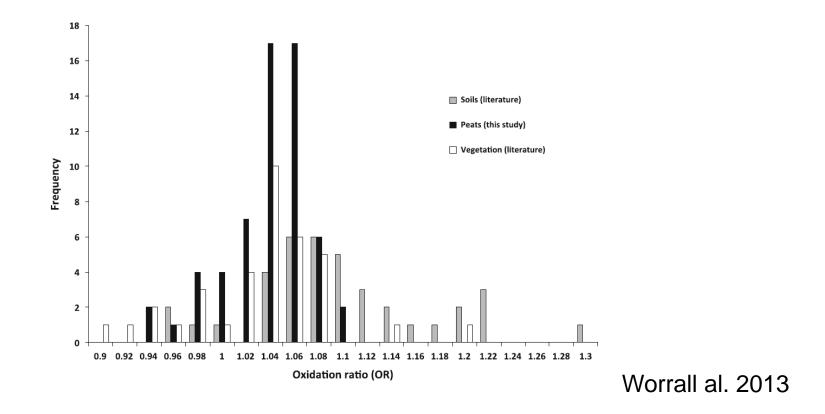

Measuring oxygen fluxes in a European beech forest - results from the OXYFLUX project

Alexander Knohl¹, Jan Muhr¹, M. Julian Deventer¹, Emanuel Blei¹, Jelka Braden-Behrens¹, Edgar Tunsch¹, Mattia Bonazza¹, Penelope A. Pickers², David Nelson³, Mark Zahniser³, and Andrew C. Manning²


¹Bioclimatology – Georg-August University Göttingen; DE ²University of East Anglia, Norwich, UK ³Aerodyne Research, Inc., Billerica, USA

O₂ provides new opportunities

O₂ as powerful tool to partition global land and ocean carbon sinks

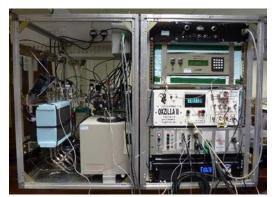

$$\Delta CO_2 = F - O - L$$
$$\Delta O_2 = -\alpha_F F + \alpha_L L + Z$$

Little data on land O₂:CO₂ exchange ratio typically assumed to be constant at 1.1

	1990-2000	2000-2010
Fossil-fuel emissions:	6.4 ± 0.4	7.8 ±0.5
Atmos. CO_2 increase:	3.2 ± 0.0	4.0 ±0.0
Net oceanic sink:	1.9 ± 0.6	2.7 ±0.6
Net land sink:	1.2 ± 0.8	1.1 ±0.8
	Units: Pg C yr	1

Keeling and Manning (2014)

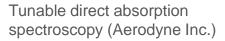
Indirect data: Oxidative ratios from organic samples


- Oxidative ratios of organic material (based on elemental analysis) are indirect estimates of long-term O₂:CO₂ exchange ratios
- Considerable variation with global mean probably smaller than 1.1

Challenge I

- Very little data exists where direct O₂:CO₂ flux measurements are done at field sites
 - Angert et al. 2015 \rightarrow O₂:CO₂ ratio of soil respiration higher than 1.1
 - Hilman et al. 2019 → O₂:CO₂ ratio of stem respiration higher than 1.1
 - Battle et al. 2019 → large variation in O₂:CO₂ ratio of canopy level measurements

Challenge II : Measuring O₂ is difficult


- 1 ppm precision out of 210 000 ppm O₂ compared to
 1 ppm precision out of 400 ppm CO₂
- a number of instruments now available but all with their own strengths and weaknesses

Custom-made O₂ measurement unit (UEA) based on fuel cell (Oxzilla, Sable Systems)

Cavity ring down spectroscopy (Picarro Inc.)

Objectives

Overall objective

To determine the O_2 :CO₂ ratio of gas exchange of a forest ecosystem in Germany

Specific objectives

- I. To measure the O_2 :CO₂ gas exchange from branches, stems and soils using a custom-made fully automated chamber system
- II. To measure the O₂:CO₂ gas exchange of the entire ecosystem using canopy air profile measurements and Inverse Lagrangian modelling

Field site Leinefelde

- Fully equipped Fluxnet site (DE-Lnf) in Central Germany
- Beech monoculture
- Canopy height: 35 m
- Age: 140 years

I. Chambers for ecosystem component measurements

Component fluxes

- Branch
- Stem
- Soil
- -> 4 chambers each

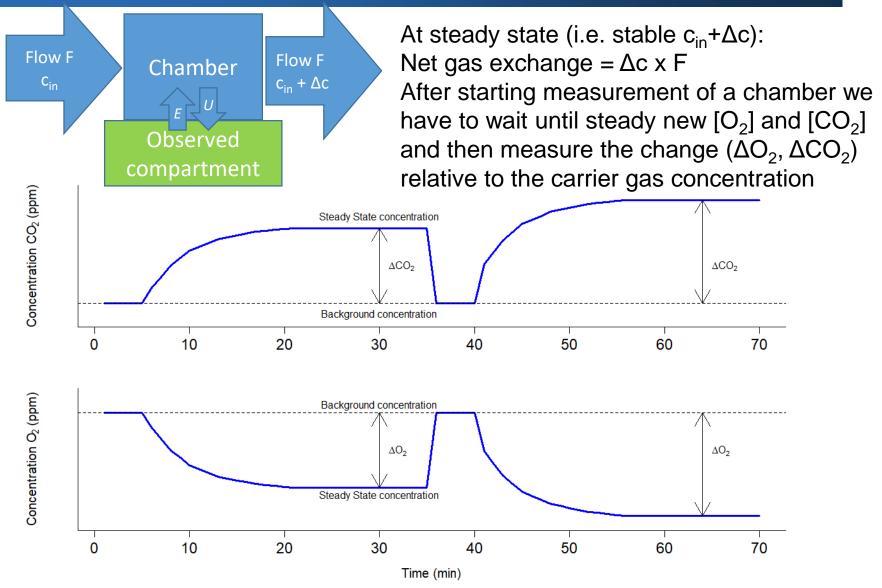
Non-measurement mode Chamber concentrations are kept at constant level close to <u>ambient</u> <u>concentration</u> in between measurements

Known carrier gas

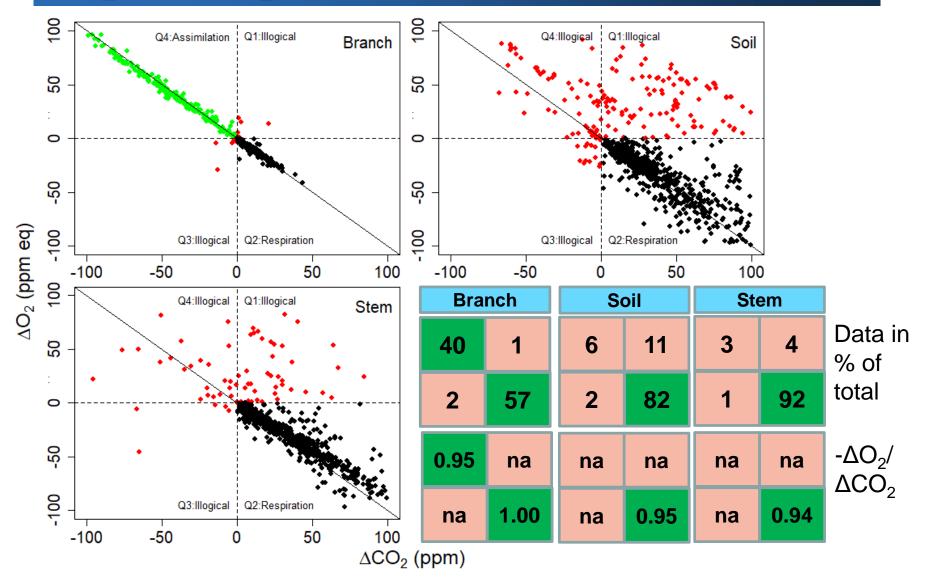
Stem chambers

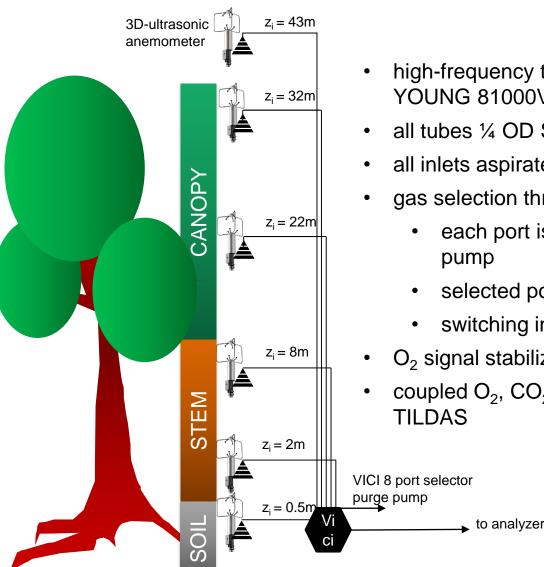
Measurement mode

Chambers are measured oneby-one


Gas of known concentration is pumped through the chamber and concentration changes $(\Delta O_2, \Delta CO_2)$ are measured -> Open throughflow steady state (see next slide)

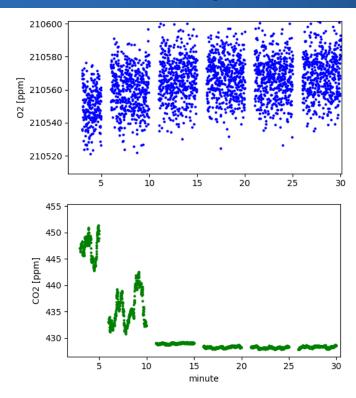
Analyzer unit for O_2 and CO_2 Precision: 1 ppm O_2 0.5 ppm CO_2

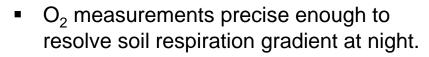

Open throughflow steady state chambers

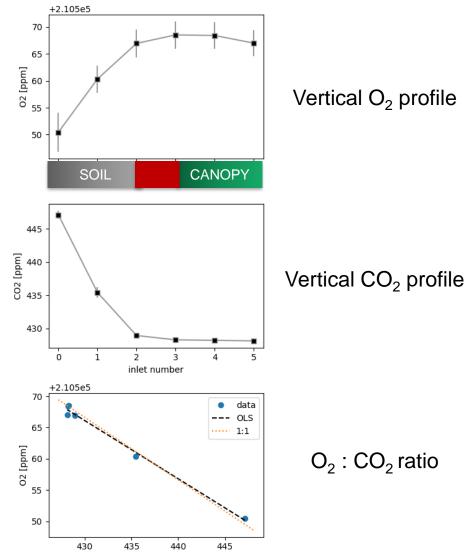

Interpreting ΔO_2 and ΔCO_2

- ΔO_2 and ΔCO_2 can be used to calculate the current exchange rates (i.e. calculate the fluxes)
- Alternatively, the ratio (- ΔO₂ / ΔCO₂) can be calculated. For anti-correlated fluxes of the same magnitude, this ratio would be 1.0, which usually is expected for assimilation and for respiration of carbohydrates
- A ratio different than 1.0 can be due to
 - a. Respiratory substrates other than carbohydrates
 - b. Alternative sources/sinks for CO_2/O_2
 - c. Measurement artifacts (technical problems)

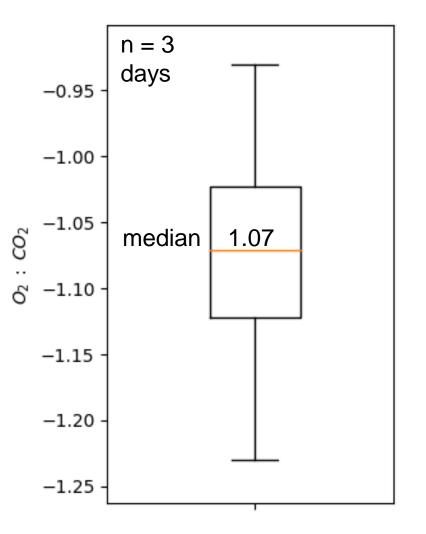
$\Delta O_2 \sim \Delta CO_2$ by chamber location

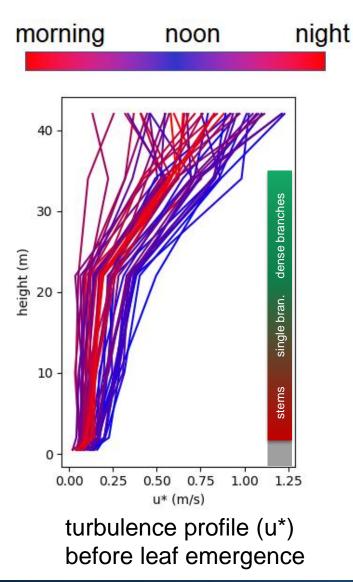



II. Setup Canopy profile


- high-frequency turbulence profile measurements with YOUNG 81000VRE
- all tubes 1/4 OD Synflex 1300, same length (50 m)
- all inlets aspirated Stevenson huts
- gas selection through constant flow VICI 8 port valve
 - each port is continuously sampled @ 1slpm by purge pump
 - selected port is sampled @ 1slpm by vacuum pump
 - switching increment 5 min
- O_2 signal stabilization in < 1 min
- coupled O₂, CO₂ measurements @ 2Hz in Aerodyne QCL-

One vertical profile over 30 min


- standard error on 4 min mean ± 0.5 ppm.
- standard deviation ±11 ppm.


CO2 [ppm]

Ecosystem-scale O₂:CO₂ exchange ratio close to 1.1

- Night-time data, 3 days in April, before leaf emergence.
- mostly soil respiration signal.
- measured exchange ratio is statistically not different from -1.1.
- However, this ratio is purely based on concentration measurements that might not be fully representative of forest ecosystem.
- next task: inverse ecosystem-scale flux calculation based on concentration- and turbulence profile
- requires vertical profile of turbulence measurements

Vertical turbulence measurements

 Mechanical turbulence (u*) decreases inside the canopy as expected from theory

Next steps:

- use near-/far-field Lagrangian particle framework
- inferred by measured turbulence u_{*}(z) and O₂ and CO₂ concentration profile C(z)
- Inversely solve for vertical source distribution profile
 S(z): sinks and sources of O₂ and CO₂ inside canopy
- derive the net ecosystem flux of O₂ and CO₂ = $\int_0^z S(z), dz$
- compare S(z) of O₂ and CO₂ with compartment-scale chamber flux measurements

- Fully automated chambers and profile systems for measurements of O₂:CO₂ gas exchange developed
- Instrument precision sufficient to resolve small variations in O₂:CO₂ gas exchange
- Preliminary results indicate average O₂:CO₂ close to 1.1 but with considerable temporal and spatial variation

Established by the European Commission

Follow us!

@BioclimGoe Bioclimatology Group at University of Göttingen

Funding

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 682512 - OXYFLUX)