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Problem ABC algorithm and adaptation
Hydrolo.gical moc.iels are widely used.for ﬂ(?Od Pseudocode of Artificial Bee Colony Al-|| Pseudocode of Artificial Bee Colony Al-
forecasting, continuous streamflow simulation gorithm gorithm for simulated solution space
and water HEROULEES management. The SUCCESS Initialize the set of food sources: Initialize the set of food sources
of a hydrological model depends on different fac- z; for i = 1.2, ..SN by z; for (i=1,2,...SN)
tor(? such ast 168 fi).rm.ulaglon, (%aifa availability r; = lowg + rand|0, 1]|(upg — lowy) Use Quasi-random Sampling
A PAratlelel: OPLUNIZaLIon. — L UETe ate ially Calculate goodness-of-fit for: Calculate goodness-of-fit for each
approaches to identity the optimal parameter fit(z;), fori = 1,2,...SN f(z:),i=1,2,...SN
Setiilw;mh (ziag béi:age%mlzedhm 11}? O(;al ;eaiﬁh while Stop criterion is not reached do Train the ANN-SM model
methods and 2) Global search methods. G for:=1,2,....5SN do while Stop criterion is not reached do
group of global search methods, swarm intelli- v; = i + rand|—1,1)(z5; — k) for i —1.2... SN do
gence could provide an alternative to improve kz ny Y | w w0 T a;--’;f’rcmd[—l (27 — k)
the application of surrogate models and to pro- > fi]t (v;) >= fit(z;) then kz y * T Tk
vide robust calibration. . :Z/U. 7’ end forj
end if for 1 =1,2,.... SN do
Basic 1dea end for Estimate f(v;), for (: =1,2,...5N)
. . . for:=1,2,.... 5N do through ANN-SM
Quasi-random sampling of parameters with
. . . . Select an employed bee: end for
the aim of mapping the {feasible solution Fit(m;) .
. . D = — for 1 =1,2,.... SN do
space. Montecarlo simulation for SNV parameter SE fit(as) e Fl) > \ th
sets, and goodness-of-fit coefficients calculation: Repeat evaluation it g (%’l >._ f(zi) then
Nash-Sutcliffe Efficiency (NSE), adapted for Generate a new random food dﬂi‘z. f_ v
peaks Nash-Sutcliffe Efficiency (ANSE), Kling source (if required). on (f Iflorl
Gupta Efficiency (KGE), and adapted for peaks end for Generate a new random food sotrce
Kling Gupta Efficiency (AKGE). Configuration end while (if required)
of the .5 N parameter sets and its goodness-ot- fit() denotes goodness-of-fit, low is the lower end while
it coefficients as trammg.; Seit of a Surrogate limit of a parameter, up is the upper limit of a Selection of possible food sources by means
Model based on Artificial Neural Net- parameter, d denotes the d — th parameter of of a threshold criterion
ks (ANN-SM) (3| in order to generate a . :
vor : . the model ot D parameters. Evaluation through the hydrological
simulated solution space. Adaptation of a odel

swarm intelligence-based approach in order
to search in the simulated space. For this study,

Artificial Bee Colony algorithm (ABC) |2 Preliminary results
is adapted. The applied hydrological model is

the Modelo Idrolégico Lumped in Con- Figure 1 shows the parameter distribu- ol e =] ] )
tinuo (MILC) [1]. tion sampled and the one obtained af- 2 ol | g
ter 3 search cycles for those that pro- g = =
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