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(Thompson et al., 2001) Rock-forming minerals identification using three-layer ANN 

trained with a small manual created dataset 

(Marmo et al., 2005) Textural identification of marine carbonate using three-layered ANN

(Singh et al., 2010) Textural identification of basaltic rock using three-layered ANN

(Baykan & Yılmaz, 2010) Identification of limited types of minerals using three-layer 

ANN based on images showing the maximum intensity values.

(Młynarczuk et al., 2013) Classification of rock thin section images under static lighting 

and polarisation  using pattern recognition approaches

(Ślipek & Młynarczuk, 2013) Classification of rock thin section images under changing 

lighting and polarisation conditions using pattern recognition approaches

(Budennyy et al., 2017) Sandstone grain segmentation and cleavage identification using 

a semi-automatic approach based on image processing and random forest.

(Li et al., 2017) Interregional sandstone classification using a transfer learning model. 

(Jiang et al., 2017) Quartz grain boundaries are extracted multi-angle thin section 

microscopic images.

(Cheng & Guo, 2017) Granularity analysis using CNN

(Tang & Spikes, 2017) Image segmentation of scanning electron microscopy (SEM) 

images of shale using CNN

(Ramil et al., 2018) Granite-forming minerals identification using three-layer ANN

(Iglesias et al., 2019) Differentiation between the mounting resin and quartz phase in the 

images of iron ore using CNN

(Borges & de Aguiar, 2019) Mineral identification for rock microscopic images taken 

under different polarisation modes using decision tree and nearest neighborhood

(Ye Zhang et al., 2019) Rock mineral identification using ML model stacking. High-level 

features of quartz and feldspar in the microscopic images are extracted using a transfer 

learning model based on a previously trained deep learning model

(Karimpouli & Tahmasebi, 2019) Image segmentation of scanning electron microscopy 

(SEM) images of sandstone using CNN
Fig.1. Timeline of ML and deep learning-based approaches for petrographic analysis. The drawbacks existing in the research are marked  with different color-

coded dots.     small training dataset,     insufficient data,     closed dataset,     low generalization capacity,      feature engineering,     images are taken under 

static lighting and polarisations,     information loss in the dataset.      

Mineral thin sections contain a treasure of information. It is anticipated that thin section samples can be 

systematically and quantitatively analyzed with a specifically designed system equipped with ML 

approaches or deep learning methods such as CNNs. However, all of previous studies related to automatic 

petrographic analysis are restricted by the insufficiency of the training data. As strengthed by the paucity of 

large volume of well-labeled data significantly impeded the development of novel deep learning methods. 

In this context, the main motivation of this thesis is to close this data gap by building a consistent and 

sufficiently large training dataset that can be used to develop advanced ML- and DL-based applications for 

petrographic identification. 
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The raw data set is generated by virtual petrographic microscopy (ViP), a cutting-edge methodology that 

can automatically scan entire thin section in gigapixel resolution. The scanning process is performed 

sequentially along a predefined grid and repeated for different rotation angles of crossed polarizers. The 

scanned mosaic image can be precisely overlapped which allows to interpolate and to fit the extinction 

behavior of each individual pixel as a smooth function. Based on the interpolated extinction information, a 

phase map qualitatively showing the mineral axis misorientations can be produced. Extra complementary 

image layers reflecting chemical and physical information of the thin section can be stacked along the third 

axis to the image cube.
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Image annotation, especially pixel-wise annotation is always time-consuming and inefficient. Moreover, it would be particularly challenging when to 

manually create dense semantic labels for ViP data in view of its size and dimensionality.To address this problem, we proposed a human-computer 

collaborative annotation pipeline  where computers extract image boundaries by splitting images into superpixels, while human-annotators 

subsequently associate each superpixel manually with a class label with a single mouse click or brush stroke. This frees the human annotator from 

the burden of painstakingly delineating the exact boundaries of grains and it has the potential to significantly speed up the annotation process.

Thin section images encompass tons of local and 

contextual information, only pixel-wise labeling can 

sufficiently cope with the complexity widely existing 

in the image of thin sections. pixel-wise annotation 

assigns each pixel with a class label. Each class 

represents one type of mineral and is indicated by a 

unique color mode. The output of pixel-wise 

labeling (semantic labeling) would be an integer 

mask with the same size as the input image.

Pixels are rectangular basic units of images, whereas Superpixels (SPs) are a group of pixels that are perceptually similar. Instead of providing a 

discrete representation of images, superpixels are better aligned with image edges and largely reduce the image complexity. Unlike object 

segmentation that aims to find hard decisions about the outline of the object, superpixels generate a controlled oversegmentation of images from 

which the shape of grains can be recovered in the subsequent processing. Usually, if K represents the number of objects in the image, P = m x n is 

the number of pixels of the input image where m, n is the height and width [px] of the given image, then for the number of superpixels N: 
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Compactness mesures the similarity of a single supepixel to a circle

Explained Variation provides a human-independent quantification

Given an image I having N pixels, S = {S1, · · ·, Sm} is superpixel segmentation, G = {G1, · · ·, Gn} is ground truth segmentation, metrics are defined as: 

Boundary Recall assessed how well the superpixel boundaries 

aligned with the ground-truth edges 

Undersegmentation Error measures the total amount of superpixel leak 

with respect to the ground-truth segment border
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The idea of merging superpixels 

came from the observation that the 

initial superpixel segmentation still 

includes redundancy that could be 

captured. The classical way to 

simplify the initial segmentation is to 

merge adjacent regions based on 

color similarity and spatial proximity. 

Merging of superpixels produce a 

coarser segmentation while still 

retaining the important boundaries 

of images
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The performances of tested algorithms are compared with respect to Rec, UE, EV and CO. 

Ideal approach to be used in the annotation pipeline should have excellent boundary adherence 

with low boundary leakage, therefore, Rec and UE are given prior attention. The existing results 

demonstrate that ETPS and SEEDS are considerably better performing than others in many 

aspects. ETPS also makes a good trade-off between the compactness of superpixels and 

boundary adherence. Although MultiSLIC shows advantages in detecting the region boundaries 

for small K, it cannot compete with SEEDS and ETPS for K=3000. On the other hand, merged 

superpixel segmentation provides less redundant representation for original images than initial 

superpixel segmentation, but quantitatively, the boundary recall of merged segmentation is 

largely reduced compared to the one that is not merged. 

Motivated by the restriction to 

the input dimensionality of the 

existing algorithms, a novel 

adaption for established SLIC 

is proposed: MultiSLIC which 

can take in multiple information

layers to extract 

superpixels


