EGU2020-18876 EMRP 2.2

European Geosciences Union General Assembly 2020 Online | 4–8 May 2020





UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE

# Analysis of Swarm Electric Field Data in View of Tsunami Events and related Earthquakes

Wojciech Jarmołowski, Paweł Wielgosz, Anna Krypiak-Gregorczyk, Beata Milanowska University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Poland



It is proven that different events on the Earth and in its atmosphere have their own impact on Earth electric field, and the earthquakes are amongst these phenomena. Many strong earthquakes (EQ) induce tsunamis, which are also suspected as contributing to the gravity waves having an impact on the ionospheric TEC.

The sensitivity of Swarm LP and POD GNSS data to EQs and tsunamis is analyzed in this study at around 500 km high orbit. Three Swarm satellites are equipped with Langmuir Probes (LP) measuring in-situ electron density of Earth electric field and POD GNSS receivers determining topside Total Electron Content (TEC) in the topside ionosphere. The integrity of both data sources is also analyzed.

The investigation of Swarm data in view of Tsunamis and earthquakes is difficult due to the several factors. The major drawbacks are:

- only three satellites (with respect to GNSS systems), the two of which fly almost together, which gives in fact only two survey tracks
- lower orbits in relations to GNSS
- orbital repetition is far from exact, which seriously limits the number of comparable observations in terms of the location and time of the day
- number of large earthquakes and tsunami events in time of Swarm science mission is limited, and many Earthquakes do not coincide sufficiently with Swarm passes in time and space

#### Introduction (3)

Swarm LP data is analyzed just after the earthquakes, as well as several days before and after the earthquakes and resulting tsunami events. The GNSS POD topside TEC from Swarm is analyzed together with LP data, in order to validate LP and assess integrity of both data sources. In-situ electron density disturbances are compared to selected/available STEC measurements between LEO and GNSS satellites.

Some preliminary calculations of GNSS phase differences from selected nearby ground stations are also compared. These initial comparisons are made in order to look for possible correlations between Swarm POD TEC and ground GNSS data, and to prepare for further work.

### Spectral look on LP and TEC data close to EQ/tsunami events

- Analyzed are Swarm LP data (EFIxLP, L1B) and TEC (Level2daily) data
- Signal and its disturbances are composed of various frequencies corresponding to various phenomena. Different frequencies can originate from normal solar activity, and different from wide range of phenommena in the electric field therefore FFT is used for spectral analysis
- Swarm speed is fast and its iteraction with TIDs can be extremely short therefore we should analyze the signal carefully and find TIDs wavelengths precisely (other reason of frequency domain application)
- LP Ne data have calculated ROD and RODI and ROD (or subsequently residual ROD<sup>r</sup>) is used in spectra short-term FFT (STFFT) analysis
- TEC data have calculated ROT and ROTI and ROT (or subsequently residual ROT) is used in STFFT analysis

# Spectral look on LP and TEC: the closest large tsunami events during Swarm mission

#### **3 EQ/tsunami events with closest passes are investigated:**

|    | WAVE               | HEIGHT | EQM | LAT      | LON       | DATE     | TIME D | EPTH  |
|----|--------------------|--------|-----|----------|-----------|----------|--------|-------|
| Ŷ  | Loyalty Islands,   | 50     | 7.1 | -22.0660 | 170.0500  | 20180829 | 035159 | 26.6  |
| Ŷ  | Alaska,Pacific     | 25     | 7.9 | 56.0460  | -149.0730 | 20180123 | 093143 | 25.0  |
| ଚ  | Kamchatka, Pacific | 10     | 7.7 | 54.4710  | 168.8150  | 20170717 | 233413 | 11.0  |
| 00 | Papua, Pacific     | 19     | 7.9 | -4.5090  | 153.4500  | 20161217 | 105112 | 103.0 |
| ଟ  | Solomon Islands,   | 56     | 7.8 | -10.6760 | 161.3300  | 20161208 | 173846 | 41.0  |
| 00 | New Zealand,       | 231    | 7.8 | -42.7570 | 173.0770  | 20161113 | 110256 | 23.0  |
| 00 | Chile, Pacific     | 467    | 8.3 | -31.5700 | -71.6540  | 20150916 | 225433 | 24.9  |
| 00 | Chile, Pacific     | 210    | 8.2 | -19.6420 | -70.8170  | 20140401 | 234646 | 20.5  |











Kamchatka

<mark>New Zealand</mark>



0 0.02 0.04 0.06 0.08 0.1

Solomon Islands

Spectral look on LP and TEC:

**FFT** parameters

- Frequencies (sampling) from 1s. to 256 s. (2 points to 512 points) for LP (2 Hz) and from 1s. to 256 s. (1 point to 256 points) for TEC (1 Hz)
- Spectrograms: Large overlaping of windows (small time step) overlap = (256 10) s.
- Scale in Hz and also in seconds of Swarm track (wavelengths must be later recalculated to km)
- Spectrogram window: In first iteration: Tukey Window 512 points (256 seconds from 2Hz data) for LP, and 256 points for 1Hz POD TEC



- Signal decomposition by FFT for selected bands, primarily we divided signal into 3 bands: (max. – 180 s., 107 - 41 s., 57 - 12 s., kindly suggested by MHP (UPC) ;-)), so the frequencies above 12 s. were removed
- Selected are 3 close passes from different days:  $\Delta \phi < 2^{\circ}, \Delta \lambda < 5^{\circ}, \Delta UTC < 0.4 h$  from central pass in day of EQ, just after EQ

#### Spectral look on LP and TEC: selection of the most similar passes CHILE **NEW ZEALAND PAPUA NEW-GUINEA** % New Zealand, 231 7.8 % Papua,Pacific % Chile,Pacific 7.9 467 8.3 19 -42.7570 173.0770 -31.5700 -71.6540 -4.5090 153.4500 20161113 110256 23.0 20150916 225433 24.9 103.0 20161217 105112 and a Za . , 180° E 60<sup>°</sup> W 20<sup>°</sup> W 0° 180<sup>°</sup> E 12**0'** W 60. 10 80 20<sup>°</sup> S 40<sup>°</sup>S

50°S

### Spectral look on LP and TEC:

#### selection of the most similar passes

Selected Comparable Times of Passes (the most close that possible in time of the day, Lat and Lon), first point of selected track compared and approximately repeated  $\Delta \phi < 2^\circ$ ,  $\Delta \lambda < 5^\circ$ ,  $\Delta UTC < 0.4$  h

| FOR DA<br>COORDS | TE = 2<br>= LAT | 2015<br>-3 | 9 16<br>.6136490 | 23 30<br>D LON - | 0.197000<br>88.93628400 | Chile         |                    |       |          |
|------------------|-----------------|------------|------------------|------------------|-------------------------|---------------|--------------------|-------|----------|
|                  |                 |            |                  |                  |                         |               |                    |       |          |
| DATE:            | 2015            | 9          | 10, 2            | 3 41 26          | .197000 , DFI           | 1.991494 DL   | A 4.762418         | PSI 5 | 5.157232 |
| DATE :           | 2015            | 9          | 10, 2            | 3 42 0           | 197000 , DFI            | -0.158176 DL2 | <b>4</b> .705127   | PSI 4 | 1.698014 |
| DATE:            | 2015            | 9          | 10 , 2           | 3 41 59          | .696000 DFI             | -0.126502 DL  | 4.705968           | PSI 4 | 1.697978 |
|                  |                 |            |                  |                  |                         |               |                    |       |          |
| DATE:            | 2015            | 9          | 16, 2            | 3 29 28          | .696000 , DFI           | 1.991766 DL   | A 0.053107         | PSI 1 | L.992472 |
| DATE:            | 2015            | 9          | 16, 2            | 3 30 31          | .696000 , DFI           | -1.991451 DL  | A -0.052764        | PSI 1 | L.992145 |
| DATE:            | 2015            | 9          | 16 , 2           | 3 30 0           | .197000 DFI             | 0.000000 DL   | A 0.000000         | PSI ( | 0.00000  |
|                  |                 |            |                  |                  |                         |               |                    |       |          |
| DATE:            | 2015            | 9          | 22, 2            | 3 18 0           | .197000 , DFI           | -0.098364 DL  | A -4.693932        | PSI 4 | 1.685370 |
| DATE:            | 2015            | 9          | 22, 2            | 3 18 30          | <u>1970</u> 00 , DFI    | -1.995220 DL  | <b>A -4.744183</b> | PSI 5 | 5.132282 |
| DATE:            | 2015            | 9          | 22 , 2           | 3 18 0           | .197000 DFI             | -0.098364 DL  | A -4.693932        | PSI 4 | 1.685370 |
|                  |                 |            |                  |                  |                         |               |                    |       |          |

| FOR DATE = 2016 12 17 11 24 0.197000<br>COORDS = LAT 26.12517580 LON 159.27805060 |                      |                      |                      |                      |                     |                                    |                   | Papua                             | а                 | NG                                  |                   |                                  |
|-----------------------------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|---------------------|------------------------------------|-------------------|-----------------------------------|-------------------|-------------------------------------|-------------------|----------------------------------|
| DATE :<br>DATE :<br>DATE :                                                        | 2016<br>2016<br>2016 | 12<br>12<br>12<br>12 | 14 ,<br>14 ,<br>14 , | 11 4<br>11 4<br>11 4 | 3 37<br>4 39<br>4 8 | .197000 ,<br>197000 ,<br>.197000 , | DFI<br>DFI<br>DFI | 1.999665<br>-1.979433<br>0.010087 | DLA<br>DLA<br>DLA | -0.991280<br>-1.021945<br>-1.004659 | PSI<br>PSI<br>PSI | 2.185609<br>2.184938<br>0.902032 |
| DATE :                                                                            | 2016                 | 12                   | 17 ,                 | 11 2                 | 3 29                | .197000 ,                          | DFI               | 1.989581                          | DLA               | 0.013349                            | PSI               | 1.989616                         |
| DATE :                                                                            | 2016                 | 12                   | 17 ,                 | 11 2                 | 4 31                | .197000 ,                          | DFI               | -1.989524                         | DLA               | -0.017255                           | PSI               | 1.989586                         |
| DATE :                                                                            | 2016                 | 12                   | 17 ,                 | 11 2                 | 4 0                 | .197000 ,                          | DFI               | 0.000000                          | DLA               | 0.000000                            | PSI               | 0.000000                         |
| DATE :                                                                            | 2016                 | 12                   | 20 ,                 | 11                   | 3 20                | .197000 ,                          | DFI               | 1.979903                          | DLA               | 1.022221                            | PSI               | 2.178928                         |
| DATE :                                                                            | 2016                 | 12                   | 20 ,                 | 11                   | 4 22                | 197000 ,                           | DFI               | -1.999251                         | DLA               | 0.991588                            | PSI               | 2.191539                         |
| DATE :                                                                            | 2016                 | 12                   | 20 ,                 | 11                   | 3 51                | .197000 ,                          | DFI               | -0.009701                         | DLA               | 1.008856                            | PSI               | 0.905873                         |

| FOR DATE = 2016<br>COORDS = LAT -11                              | 5 11 13 14 18 0.197000<br>12138780 LON 161.89700560                                                                | New Zealand                                                                           |                                  |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------|
| DATE: 2016 11<br>DATE: 2016 11                                   | 10 , 14 37 16.197000 , DFI<br>10 , <u>14 38 18 19700</u> 0 , DFI                                                   | 1.984760 DLA -0.880787 PSI<br>-1.988900 DLA -0.948939 PSI                             | 2.165867<br>2.194639             |
| DATE: 2016 11                                                    | 10 14 37 47.197000 DFI                                                                                             | -0.002193 DLA -0.915509 PSI                                                           | 0.898316                         |
| DATE: 2016 11<br>DATE: 2016 11<br>DATE: 2016 11                  | 13   14   17   29.197000   DFI     13   14   18   31.197000   DFI     13   14   18   0.197000   DFI                | -1.986664 DLA -0.033484 PSI<br>0.000000 DLA 0.000000 PSI                              | 1.987204<br>1.986934<br>0.000000 |
| DATE: 2016 11<br>DATE: 2016 11<br>DATE: 2016 11<br>DATE: 2016 11 | 16 , 13 57 39.696000 , DFI<br>16 , 13 58 41.696000 , DFI<br>16 , 13 58 10.696000 , DFI<br>16 13 58 10.696000 , DFI | 1.983860 DLA 0.961720 PSI<br>-1.989606 DLA 0.893413 PSI<br>-0.002995 DLA 0.926920 PSI | 2.198158<br>2.172894<br>0.909513 |
|                                                                  |                                                                                                                    |                                                                                       |                                  |

| FOR DAT          | TE = 2<br>= LAT | 2016<br>-12. | 11<br>.9711  | 13<br>7650     | 12 45<br>LON - | 5 0<br>-174                            | .1970<br>.6765       | 00<br>990    | D            |             |                      |            |            |                  |            |                      |
|------------------|-----------------|--------------|--------------|----------------|----------------|----------------------------------------|----------------------|--------------|--------------|-------------|----------------------|------------|------------|------------------|------------|----------------------|
| DATE :<br>DATE : | 2016<br>2016    | 11<br>11     | 10 ,<br>10 , | 13<br>13       | 4 10<br>5 18   | 5.19 <sup>°</sup><br>3.19 <sup>°</sup> | 7000<br>7000         | , ם<br>נם ,  | FI<br>FI     | 1.9         | 980462<br>992629     | DLA<br>DLA | -0.<br>-0. | 881763<br>947199 | PSI<br>PSI | 2.160127<br>2.194398 |
| DATE:            | 2016            | 11<br><br>11 | 10 , (<br>   | 13             | 4 4 6          | 5.69<br>                               | 6000<br>7000         | נם 🤇<br>וח   | ГІ<br><br>гт | 0.0         | 025897<br><br>986628 | DLA<br>    | -0.<br>    | 914721           | PSI        | 0.891802             |
| DATE :<br>DATE : | 2016<br>2016    | 11<br>11     | 13 ,<br>13 , | 12<br>12<br>12 | 45 31<br>45 (  | 19 <sup>.</sup><br>.19 <sup>.</sup>    | 7000<br>7000<br>7000 | וס ,<br>וס , | FI<br>FI     | -1.9<br>0.0 | 986379<br>000000     | DLA<br>DLA | -0.<br>0.  | 032006<br>000000 | PSI<br>PSI | 1.986622             |
| DATE :<br>DATE : | 2016<br>2016    | 11<br>11     | 16 ,<br>16 , | 12<br>12       | 24 39<br>25 41 | 9.69                                   | 6000<br>6000         | , DI<br>, DI | FI<br>FI     | 1.9<br>-1.9 | <br>986545<br>986359 | DLA<br>DLA | 0.<br>0.   | 960286<br>894685 | PSI<br>PSI | 2.197428<br>2.167805 |
| DATE:            | 2016            | 11           | 16 ,         | 12             | 25 11          | .19                                    | 7000                 | נים 🌔        | FI<br>       | -0.0        | 032135               | DLA        | 0.         | 926187           | PSI        | 0.903066             |

# LP, SFFT SPECTROGRAMS CHILE 2015

ROD, Swarm B

EQ > 2015.09.16 22:54:33

#### Tukey Window, Size 256 s.,

9.14

10.67 12.8

21.33

23.35 23.4 23.45 23.5 UTC



In the vicinity of Chile-Illapel EQ, Swarm crosses edges of equatorial anomaly, which is a dominating signal is spectral sense. On the other hand Swarm B is higher than A/C. Separation and removal of long-wavelength patterns must be done.

# LP, FFT DECOMPOSITION CHILE 2015

# ROD, Swarm B

EQ > 2015.09.16 22:54:33

#### FFT decomposition into freq.: 12-57 s., 41-107 s., 108-max. s.



The equatorial anomaly signal occupies LP signal at wide band of frequencies and it is hard to separate the same frequencies along the whole Swarm track. Different frequencies occur in different places.

## POD TEC, SFFT SPECTROGRAMS CHILE 2015

# ROT, Swarm B, PRN 29

EQ > 2015.09.16 22:54:33

#### Tukey Window, Size 256 s.,



POD TEC shows similar behavior. TEC models can be helpful in the further research for detrending. However, some separated signal parts can be noted also from these SFFT samplings. Resampling after efficient detrending must be made.

# LP, SFFT SPECTROGRAMS NEW ZEALAND 2016 (first pass)

ROD, Swarm A

EQ > 2016.11.13 11:02:56





spuo 12.8

s 21.3

12.8

12.85 12.9

UTC

12.95

Noisy signal, occupying many frequencies, 3 days before the EQ and quite far to the South from NZ

Some signal before middle point is separated, not mixed with high freq. noise, as before

# POD TEC, SFFT SPECTROGRAMS NEW ZEALAND 2016 (first pass)

# ROT, Swarm A, PRN 15

EQ > 2016.11.13 11:02:56

#### Tukey Window, Size 256 s.,



as well as in LP signal

Less noise, more low frequencies and are better separated

# LP, SFFT SPECTROGRAMS PAPUA NEW-GUINEA 2016

# ROD, Swarm A

EQ > 2016.12.17 10:51:12

#### Tukey Window, Size 256 s.,



# LP, FFT DECOMPOSITION PAPUA NEW-GUINEA 2016

10:51:12

EQ > 2016.12.17

# ROD, Swarm A

FFT decomposition into freq.: 12-57 s., 41-107 s., 108-max. s.



There are large gradients at some selected frequencies. Recalculations of units and comparison with ground data will be necessary...

### POD TEC, SFFT SPECTROGRAMS PAPUA NEW-GUINEA 2016

### ROT, Swarm A, PRN 32

#### EQ > 2016.12.17 10:51:12

#### Tukey Window, Size 256 s.,



### RESAMPLINGS

- close tracks from 9 days taken (similar longitudes and UTC time), passes separated by 3 or 5 days
  Δφ < 2°, Δλ < 6°, ΔUTC < 0.9 h from central pass just after the EQ (light green)</li>
- Long wavelength signal removal by FFT, from selected band 200 s. to max. long-wavelength
- Frequencies (resampling): different spacing for lower and higher frequencies: from 6 s. with step 2 s. to 80 s., and from 80 s. with step 20 s. to 260 s.
- Still large overlaping of windows (neighbouring windows moved by 10 s.)
- WINDOW: Hamming Window 64 seconds (128 points from 2Hz data for LP), and 64 points for 1Hz POD TEC



### **RESAMPLED:** LP, SFFT SPECTROGRAMS PAPUA NEW-GUINEA 2016

#### ROD

Signals below 200 s. removed, **Hamming** Window, Size 64 s., resampling of frequencies: in points [260:-20:80,80:-2:6]



There are signatures in LP signals on Dec 6th and Dec 9th of 2016, at frequencies between 12 s. and, say 80 s.

The region is seismologically very active. Aside from 7.9 EQ/tsunami on Dec 17th, there was also 7.8 EQ/tsunami on Dec 8th

EQ > 2016.12.17 10:51:12

## EQs/Tsunami events in the southern Pacific (the largest)

| Date     | Place                           | Max. peak from TG (cm) | Max. peak Lat | Max. peak Lon | Max. peak Time (UTC) |
|----------|---------------------------------|------------------------|---------------|---------------|----------------------|
| 20180829 | Loyalty Islands, Pacific        | 50                     | -19.5326      | 169.2660      | 20180829052700       |
| 20180515 | Pensylvania, Atlantic           | 22                     | 41.2833       | -72.9083      | 20180516005600       |
| 20180123 | Alaska, Pacific                 | 25                     | 41.7450       | -124.1830     | 20180123152100       |
| 20170717 | Kamchatka, Pacific              | 10                     | 52.7308       | 174.1030      | 20170718001200       |
| 20170501 | Alaska, Pacific                 | 6                      | 58.1933       | -136.3430     | 20170501131500       |
| 20170424 | Chile,Pacific                   | 16                     | -33.0273      | -71.6259      | 20170424223700       |
| 20170122 | Papua,Pacific                   | 4                      | -6.6928       | 156.4090      | 20170122074800       |
| 20161217 | Papua,Pacific                   | 19                     | -6.6928       | 156.4090      | 20161217131900       |
| 20161208 | Solomon Islands, Pacific        | 56                     | -20.6929      | 164.9420      | 20161208210100       |
| 20161121 | Honshu,Pacific                  | 35                     | 39.0000       | 141.7500      | 20161121225600       |
| 20161113 | New Zealand, Pacific            | 231                    | -42.4129      | 173.7030      | 20161113114400       |
| 20160901 | New Zealand, Pacific            | 21                     | -37.5503      | 178.1590      | 20160901165900       |
| 20160819 | South Georgia, Atlantic, Indian | 14                     | -54.2800      | -36.5000      | 20160819092900       |
| 20160812 | Vanuatu,Pacific                 | 22                     | -19.5326      | 169.2660      | 20160812025400       |
| 20151111 | Chile,Pacific                   | 58                     | -29.9501      | -71.3353      | 20151111033500       |
| 20151018 | Alaska, Pacific                 | 18                     | 59.5480       | -139.7350     | 20151018131300       |
| 20150916 | Chile,Pacific                   | 467                    | -29.9501      | -71.3353      | 20150917002400       |

| Date     | Place                           | EQ magnitude | EQ Lat   | EQ lon    | EQ time (UTC)  | EQ Depth (km) |
|----------|---------------------------------|--------------|----------|-----------|----------------|---------------|
| 20180829 | Loyalty Islands, Pacific        | 7.1          | -22.0660 | 170.0500  | 20180829035159 | 26.6          |
| 20180515 | Pensylvania, Atlantic           |              |          |           | 20180515000000 | meteo         |
| 20180123 | Alaska, Pacific                 | 7.9          | 56.0460  | -149.0730 | 20180123093143 | 25.0          |
| 20170717 | Kamchatka,Pacific               | 7.7          | 54.4710  | 168.8150  | 20170717233413 | 11.0          |
| 20170501 | Alaska, Pacific                 | 6.2          | 59.8440  | -136.6950 | 20170501123155 | 2.0           |
| 20170424 | Chile,Pacific                   | 6.9          | -33.0730 | -72.0510  | 20170424213826 | 25.0          |
| 20170122 | Papua,Pacific                   | 7.9          | -6.2140  | 155.1220  | 20170122043023 | 136.0         |
| 20161217 | Papua,Pacific                   | 7.9          | -4.5090  | 153.4500  | 20161217105112 | 103.0         |
| 20161208 | Solomon Islands, Pacific        | 7.8          | -10.6760 | 161.3300  | 20161208173846 | 41.0          |
| 20161121 | Honshu, Pacific                 | 6.9          | 37.3920  | 141.4030  | 20161121205949 | 11.0          |
| 20161113 | New Zealand,Pacific             | 7.8          | -42.7570 | 173.0770  | 20161113110256 | 23.0          |
| 20160901 | New Zealand, Pacific            | 7.0          | -37.3590 | 179.1460  | 20160901163757 | 19.0          |
| 20160819 | South Georgia, Atlantic, Indian | 7.4          | -55.2790 | -31.8740  | 20160819073222 | 10.0          |
| 20160812 | Vanuatu,Pacific                 | 7.2          | -22.4950 | 173.1100  | 20160812012635 | 10.0          |
| 20151111 | Chile,Pacific                   | 6.9          | -29.4830 | -72.0350  | 20151111015438 | 12.0          |
| 20151018 | Alaska, Pacific                 |              |          |           | 20151018051900 | landslide     |
| 20150916 | Chile,Pacific                   | 8.3          | -31.5700 | -71.6540  | 20150916225433 | 24.9          |

There was also previous tsunami on Dec, 8th in the region.



These 2 EQs in December of 2016 induce tsunamis and are included in tsunami database, however there were significantly more Eqs, which will be shown later...

### **RESAMPLED:** LP, SFFT SPECTROGRAMS PAPUA NEW-GUINEA 2016

ROD

EQ > 2016.12.17 10:51:12



And resampled with smaller 64 s. window, clearly separated signal at 30 s. frequency just after the EQ on Dec 17th, 2016. The closer to EQs, the stronger power spectrum and better separation of frequencies can be noticed. These frequencies occupy band somewhere between 20 s. and 60 s.

### **RESAMPLED:** LP, SFFT SPECTROGRAMS PAPUA NEW-GUINEA 2016

ROD

(although TEC is larger)

#### EQ > 2016.12.17 10:51:12

10.82 10.84 10.86 10.88 10.9 10.92 10.94 UTC



large, around 200 s. in fast Swarm track

#### **RESAMPLED:** POD TEC, SFFT SPECTROGRAMS PAPUA NEW-GUINEA 2016

### ROT, Swarm A, PRN 32

EQ > 2016.12.17 10:51:12

Signals below 200 s. removed, **Hamming** Window, Size 64 s., resampling of frequencies: in points [260:-20:80,80:-2:6]



Similar signatures in POD TEC signals on Dec 6th and Dec 9th of 2016, at frequencies between 12 s. and, say 80 s.

Still remember that aside from 7.9 EQ/tsunami on Dec 17th, there was also 7.8 EQ/tsunami on Dec 8th

### **RESAMPLED:** POD TEC, SFFT SPECTROGRAMS PAPUA NEW-GUINEA 2016

### ROT, Swarm A, PRN 32

EQ > 2016.12.17 10:51:12



These signals of lower frequency and smaller amplitude can be suspected to come from the edges of equatorial anomaly: to be checked ! And again, in POD TEC, the same clearly separated signal at 30 s. frequency just after the EQ on Dec 17th, 2016.

### **RESAMPLED:** POD TEC, SFFT SPECTROGRAMS PAPUA NEW-GUINEA 2016

### ROT, Swarm A, PRN 32

EQ > 2016.12.17 10:51:12



These signals of lower frequency and smaller amplitude can be suspected to come from the edges of equatorial anomaly: to be checked ! On Dec 25th, in POD TEC, we have aside from suspected solar effects, a separated signal of unknown origin. Its frequency appears to be higher than 30 s. ! Or there are two signals !

On Dec 28 th, we see again separated strong signal at 30 s. frequency

#### The largest Eqs (>= 6.0) in Papua NG region in December 2016 (far from total numer)

6.0

6.0

6.4

6.3

7.9

6.0

6.9

6.5

7.8

5.5

2016-12-03 14:11:12 (U

155.0 km

month...



0.04

0.02

12.15 12.2 12.25 12.3 12.35 UTC

2016 12 9, mid.epoch: 11: 56: 10 is 18.3h after EQ=7.8 Swarm A Or > 32 uqrg ep: 2016 12 9 11 150<sup>°</sup> E 180<sup>°</sup> E

> 180 260

12.15 12.2 12.25 12.3 12.35 UTC

0.01

#### Reamaining EQs (>= 5.4) in Papua NG region in December 2016 (far from total numer)

# **≊USGS**



# Very preliminary ground GNSS data investigation

Differences of phase observations from nearby IGS stations will be used in the validation in future research. Some examples of ROT and TEC can be shown (GPS and GLONASS satellites)



#### Acknowledgements

This work is supported by ESA programme: "Swarm+ Coupling: High-Low Atmosphere Interactions"

Leader: University of Warmia and Mazury in Olsztyn, Poland

Consortium members: NOA (Athens), TUM (Munich), UPC (Barcelona)

ESA Technical Officer: Roger Haagmans



Project name:

Contribution Of Swarm data to the prompt detection of Tsunamis and Other natural hazards (COSTO)







### CONCLUSIONS...

- some signal at around 0.04 frequency (around 30 s. of Swarm track) repeats in many LP and POD TEC records close to EQs and just after EQs, whereas equatorial anomaly, usually is related with frequencies lower than 100 s. (only these are available everyday)
- LP Ne and POD TEC signals show very good integrity of the signals in spectral sense
- additional detrending and resampling must be made in order to find interesting frequencies more precisely (selected frequencies taken to analyses)
- more distant places, but quiet environment (tsunami response)
- different FFT windows?
- Interpretation referring to speeds of TIDs, recalculation of frequency units, relatively to Swarm and to ground observations. Comparison with ground GNSS.