

The RPW Time Domain Sampler (TDS) on Solar Orbiter: In-flight performance and first data

Jan Soucek⁽¹⁾, Ludek Uhlir⁽¹⁾, Radek Lan⁽¹⁾, David Pisa⁽¹⁾, Ivana Kolmasova⁽¹⁾, Ondrej Santolik⁽¹⁾, Vratislav Krupar^(1,6), Oksana Kruparova⁽¹⁾, Milan Maksimovic⁽²⁾, Matthieu Kretzschmar⁽³⁾, Yuri Khotyaintsev⁽⁴⁾, and Thomas Chust⁽⁵⁾

(1) Institute of Atmospheric Physics, Prague, Czechia (2) LESIA, Paris Observatory, Meudon, France (3) LPC2E/CNRS, Orleans, France (4) IRFU, Uppsala, Sweden (5) LPP, Paris, France, (6) NASA GSFC, USA

RPW: Radio and Plasma Waves instrument on Solar

Orbiter

PI: Milan Maksimovic (LESIA, Paris)

Electric field

• 3 stacer antennas (6 meters long): V1, V2, V3

• DC to 16 MHz

 Biased antennas, first low frequency E-field measurements in inner heliosphere)

Magnetic field

• 0.1 Hz to 200 kHz

 Magnetic measurements up to electron plasma frequency

Electronics box:

- Low Frequency Receiver (LFR)
- Time Domain Sampler (TDS)
- Thermal noise & High Frequency Receiver (TNR/HFR)

Antennas

Time Domain Sampler – TDS

☐ Waveform receiver designed to capture waves and dust impacts ☐ Up to 4 simultaneously sampled E/B field components chosen from: monopole antenna voltages (Vx) differential antenna voltages (Vx-Vy) AC magnetic field from the high frequency search coil □ Possible sampling frequencies: 65.5 kHz, 131 kHz, 262 kHz, 542 kHz (2ⁿ Hz) ☐ TDS analog bandwidth is 100 Hz — 200 kHz ☐ TDS is a waveform receiver, capturing high resolution waveform snapshots ☐ Implements on-board signal analysis, designed to classify observed data and identify wave and dust impacts. ☐ TDS downlinks triggered snapshots (auto-detected "best" events) as well as

statistical data about all the observed events.

Early operations of RPW/TDS

☐ TDS was first powered on on February 12th during antenna deployment

First look at data - interference

- ☐ The data looks good, but unfortunately, we see a lot of spacecraft interference.
- ☐ Worst by far is the solar panel DC/DC converter at 120 kHz

Solar panel power converter

Reaction wheel DC/DC converter

TDS data products

The following data products are produced by TDS:

Data products	What data	Cadence
Regular snapshots	Waveform: 4 components (3E+1B) sampled at 262 ksps or 524 ksps.	4k points every 5 minutes.
Triggered snapshots	Waveform: 4 components (3E+1B) sampled at 262 ksps or 524 ksps. Autodetected.	16k points 64 snapshots per day.
Statistics	Maximum /average amplitude, frequency etc.	Every 10 seconds.
1D histograms	Dust amplitude, wave amplitude, peak frequency	4 histogram every 10 minutes
2D histograms	Dust: amplitude vs. ramp Waves: amplitude vs. bandwidth	1 or 2 histograms every 30 minutes.
Max. amplitude (MAMP)	A waveform of max E(t) taken over 2^N data samples.	Only used in Burst mode or during high rate. Typically 16 sps.

Usual modes of operation

- ☐ During commissioning, we run a variety of modes, but the usual operational modes are:
 - Sampling 524 ksps, monopole antenna configuration (V1, V2, V3 and B)
 - Sampling 524 ksps, dipole antenna configuration (V1-V3, V2-V1, V3-V2 and B)
 - Sampling 262 ksps, monopole antenna configuration (V1, V2, V3 and B)
 - Sampling 262 ksps, dipole antenna configuration (V1-V3, V2-V1, V3-V2 and B).
 - 262 ksps modes are clean and adequate for larger heliocentric distances
- ☐ Data taken (current operation)
 - ☐ Regular snapshots of 4096 samples, every 5 minutes
 - ☐ Triggered snapshots of 16k samples. About 64 per day, but varies
 - ☐ Statistical data, once every 16 seconds (preliminary, this depends on the wave selection algorithm settings)
 - ☐ Histograms of wave and dust properties (same as above, still needs tuning)

RPW TDS data examples

01-Apr-2020, 52 snapshots (indices on X axis)

LF waves

- ☐ Dipole mode, 262 ksps
- Spectra calculated from snapshots.
- Example of 1 day of triggered snapshots (x axis is the snapshot index)

Langmuir waves

TDS observes a lot of Langmuir waves and these are successfully detected by the onboard algorithm.

Low frequency waves

Low frequency waves at kHz frequencies (ion acoustic, electron-acoustic).

Dust impacts

□ Voltage spikes associated with impacts of dust on the Spacecraft body are observed. Automatic detection works, but parameters being updated.

Summary

- ☐ The RPW TDS module works properly and produces valid data.
- □ Automatic wave and dust detection works, but is somehow biased by strong electromagnetic interference from the spacecraft.
- The detection is a work in progress and a software update will be uploaded to mitigate the interference bias.
- We have already observed the phenomena TDS is designed to study:
 - Langmuir waves around plasma frequency
 - Other waves at lower frequencies
 - Dust impact spikes