GLOBAL DYNAMIC EXPOSURE AND THE OPENBUILDINGMAP

A BIG-DATA AND CROWD-SOURCING APPROACH TO EXPOSURE MODELING

DANIJEL SCHORLEMMER (GFZ)

THOMAS BEUTIN, FABRICE COTTON, NICOLAS GARCIA OSPINA GFZ), NAOSHI HIRATA (U TOKYO/NIED), KUO-FONG MA (NCU TAIWAN), CECILIA NIEVAS, KARSTEN PREHN (GFZ), AND MAX WYSS (ICES)

KNOWING EVERY BUILDING

Imagine we know every building worldwide → exact location & size \rightarrow number of people inside

 \rightarrow type and vulnerability

 \rightarrow value

THE CHALLENGE

– DYNAMIC exposure model for monitoring risk based on open data
→ capturing urbanization

– HIGH-RESOLUTION exposure data globally
→ on the building-by-building level

UNDERSTANDING THE DYNAMICS

From static to dynamic risk

- \rightarrow Cities are growing and reshaping
- \rightarrow Building stock and values are changing
- → Smaller earthquakes can weaken structures

THE STRATEGY

- CROWD-SOURCED APPROACH FOR DATA COLLECTION

 \rightarrow Developing a platform around the OpenStreetMap ecosystem

– INTEGRATING STANDARDS

→ From GEM/USGS building taxonomy to EMS98 classification

- PROVIDING DYNAMIC EXPOSURE

→ Deriving exposure indicators with SERA/GEM exposure models

OPENSTREETMAP THE WIKIPEDIA OF GEO DATA

OPENSTREETMAP TODAY:

6+ million contributors6+ billion elements

OpenStreetMap node density

OPENBUILDINGMAP

OPENBUILDINGMAP = OpenStreetMap + other open data + expert knowledge

OPENBUILDINGMAP TODAY:

5+ million building footprints added every month (> 2 per second)
390+ million building footprints

CROWD ACTIVITY

DYNAMICS – PROCESSING

- → Updating from OpenStreetmap every 60 seconds
- → Processing all changes

LINCH

 \rightarrow Algorithmically assessing all possible building properties

DERIVING TAXONOMY VALUES

	Corner building	Building #2	Building #4
Land use	residential	residential	residential
Shops etc.	restaurant		
\rightarrow Occupancy	mixed	residential	residential
Position			
Direction			
Shape			
Footprint area			
Stories			
→ Inhabitants			
→ Date			
\rightarrow Exterior walls			
→ Floor			
→ Roof			

From predominant land use, building type, and points of interest (shops, cafes, etc.) we derive the occupancy.

OpenStreetMap explicit data OpenStreetMap implicit data (Semantically) derived data

DERIVING TAXONOMY VALUES

100 II. II

HH

	Corner building	Building #2	Building #4
Land use	residential	residential	residential
Shops etc.	restaurant		
\rightarrow Occupancy	mixed	residential	residential
Position	corner	interior of a block	interior of a block
Direction	undefined	along street	along street
Shape	irregular	rectangle	U-shape
Footprint area	~440m ²	~325m ²	~620m ²
Stories	5	7	5
→ Inhabitants	~45	~45	~65
→ Date			

- → Exterior walls
- → Floor
- → Roof

From building footprint area and number of stories we derive the expected number of inhabitants using external statistical data.

OpenStreetMap explicit data OpenStreetMap implicit data (Semantically) derived data

Example from central Berlin, Germany

DERIVING TAXONOMY VALUES

ine II.

II II

	Corner building	Building #2	Building #4
Land use	residential	residential	residential
Shops etc.	restaurant		
\rightarrow Occupancy	mixed	residential	residential
Position	corner	interior of a block	interior of a block
Direction	undefined	along street	along street
Shape	irregular	rectangle	U-shape
Footprint area	~440m ²	~325m ²	~620m ²
Stories	5	7	5
→ Inhabitants	~45	~45	~65
→ Date	pre-1930	post-1945	pre-1930
→ Exterior walls	masonry	concrete	masonry
→ Floor	wooden beams	concrete	wooden beams
→ Roof	mansard	flat	mansard

From location, position, and number of stories we derive the construction date and subsequently derive information about walls, floors, and roofs from knowledge about local architecture.

OpenStreetMap explicit data OpenStreetMap implicit data (Semantically) derived data

Example from central Berlin, Germany

NARROWING DOWN...

If for a building the available information is not sufficient for an unambiguous classification, we use all available information to narrow down the classical building-type distribution (for the region) to the possible subset of types that match the available building data

ATHENS, GREECE

Addressing the lack of building data completeness

LACK OF COMPLETENESS

LACK OF COMPLETENESS

KINDS OF EXPOSURE OUTPUTS

INCOMPLETE

COMPLETE

AGGREGATION LEVEL

- → Number of buildings in a cell
- → Number of people per building type in a cell
- → Proportion of building types in a cell
- → Replacement cost of all buildings of the same type in a cell

BUILDING-BY-BUILDING LEVEL

- → Building type
- \rightarrow Number of people in the building
- → Replacement cost of the building

INCREASING THE RESOLUTION

FROM AGGREGATION LEVEL

Aggregated exposure on a 1x1km grid from the upcoming GEM Global Exposure Database.

Derived from data on population, households, land cover, building inventory, living standard, topography, ...

VIA BLOCK-BY-BLOCK LEVEL

Exposure data on street block or multi-block resolution.

Highlights critical infrastructure such as power facilities and bridges but also hospitals and school.

TO BUILDING-BY-BUILDING LEVEL

Exposure on a building-by-building resolution.

Depends on availability of detailed building data, covering building footprints, occupancy type, amenities, and structural information.

COLOGNE

– Example earthquake risk model for the city

- Full building coverage in OpenBuildingMap

- Additional open-data sources available

GLOBAL DYNAMIC EXPOSURE NATURAL HAZARD RESILIENCE FOR A RAPIDLY CHANGING SOCIETY CLASSIFICATION I. -JT er / iiv

HEAVY DAMAGE

RESIDENTS PER BUILDING

VALUE

SUMMARY

GLOBAL DYNAMIC EXPOSURE

- → Open and purely algorithmic (reproducible) model
- → Building on constantly growing databases

CROWD-SOURCING WILL CREATE

- → Amounts of high-quality data never seen before
- \rightarrow Risk awareness and understanding of mitigation measures

THANK YOU

CONTACT: DS@GFZ-POTSDAM.DE

