Evaluating current convection-permitting ensembles for past high-impact weather events in Italy: results from the SPITCAPE Special Project

V Capecchi

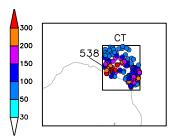
LaMMA

EGU General Assembly 2020

Goal of the SPITCAPE ECMWF Special Project

 assess the added value of convection-permitting (CP) ensembles with respect to global ones in reforecasting past high-impact weather events

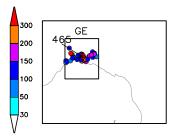
Further goals


- estimate the strengths/limitations of the simple dynamical downscaling method to initialise CP models (WRF-ARW, MESO-NH and MOLOCH) nested in the ECMWF global ensemble (horiz res ≃ 20 km)
- contribute to the debate about the reliability of the three CP models with respect to:
 - the accuracy of the results
 - the computational costs

Cinque Terre (**CT**) - 25/Oct/2011

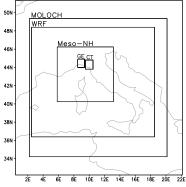
north-western Italy

- Severe weather over complex orography
- Mesoscale Convective System (MCS)
- Maximum rainfall rates $> \frac{150mm}{1-hour}$ and $\frac{450mm}{12-hour}$



Genoa (**GE**) - 4/Nov/2011

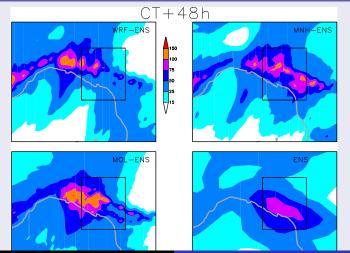
north-western Italy


- Self-regenerating and quasi-stationary V-shaped MCS
- Maximum rainfall rate $> \frac{390mm}{6-hour}$ (returning period $\simeq 200$ ys)
- low-level convergence lines triggered auto-regenerating convective cells

Re-forecast of CT and GE - Global Model

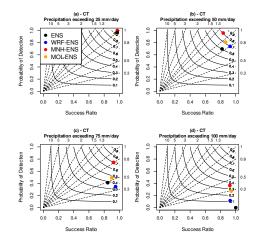
- ECMWF ENS ensemble forecasts
- IFS model cycle 41r2 (March 2016)
- grid spacing \simeq 20 km
- forecast lengths: +72-hour, +60-hour, +48-hour, +36-hour

Recent versions of:


- WRF-ARW @ 3 km
- Meso-NH @ 2.5 km
- MOLOCH @ 2.5 km

Model	Rows×Cols	Levels	Grid points	Δt
WRF-ARW	400 imes 440	55	\simeq 9.7 million	18 sec
Meso-NH	225 imes 270	52	$\simeq 3.1$ million	6 sec
MOLOCH	502×614	50	$\simeq 15.4$ million	30 sec

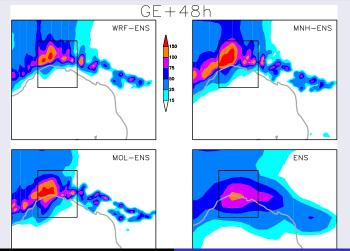
EGU 2020 5-8/May/2020 | Sharing Geoscience Online


Results: CT ensemble mean (forecast length is +48-hour)

daily cumulated precipitation is underestimated

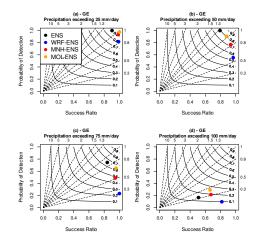
EGU 2020 5-8/May/2020 | Sharing Geoscience Online

Results: CT performance diagrams



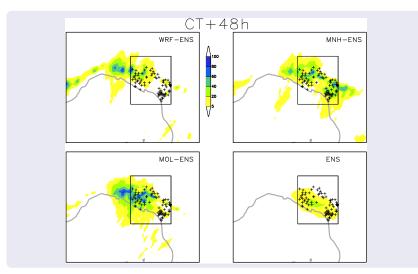
- Meso-NH (• symbol) provides more skillful predictions
- ENS (● symbol) as good as CP models ≤75 mm
- poor skills for all models for thresholds \geq 100 mm

EGU 2020 5-8/May/2020 | Sharing Geoscience Online


Results: GE ensemble mean (forecast length is +48-hour)

daily cumulated precipitation is underestimated

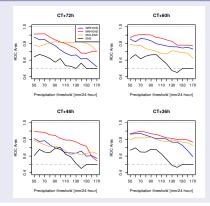
EGU 2020 5-8/May/2020 | Sharing Geoscience Online


Results: GE performance diagrams

- ENS (•) & MOLOCH (•) outperform the other models
- ENS (●) comparable/better than CP models for ≤75 mm
- poor skills for all models for ≥100 mm

EGU 2020 5-8/May/2020 | Sharing Geoscience Online

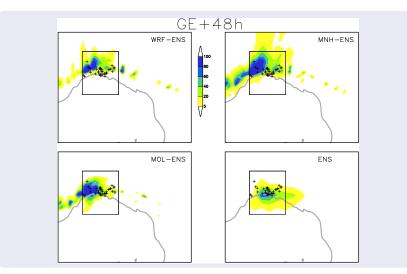
Results: CT prob of precipitation (PoP) >100 mm



"+" rain-gauge where precipitation $>\!100$ mm was observed

EGU 2020 5-8/May/2020 | Sharing Geoscience Online

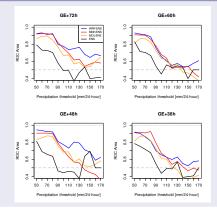
Results: CT PoP verification - ROC Area


X-axis: precipitation thresholds \in [50,170] mm, Y-axis: ROC Area

- CP ensembles outperform ENS (____)
- CP ensembles have similar skills and ROC Area is >0.5 up to 170 mm
- Meso-NH (____) better than MOLOCH (____)/WRF (____)
- ENS (____) ROC Area is <0.5 at about 130 mm

EGU 2020 5-8/May/2020 | Sharing Geoscience Online

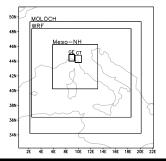
Results: GE prob of precipitation (PoP) >100 mm



"+" rain-gauge where precipitation >100 mm was observed

EGU 2020 5-8/May/2020 | Sharing Geoscience Online Hi-r

Results: GE PoP verification - ROC Area


X-axis: precipitation thresholds \in [50,170] mm, Y-axis: ROC Area

- CP ensembles outperform ENS (____)
- CP ensembles have similar skills [WRF(____) occasionaly better] and ROC Area is <0.5 at about 120-130 mm
- ENS (____) ROC Area is <0.5 at about 90-100 mm

EGU 2020 5-8/May/2020 | Sharing Geoscience Online

Model	Rows×Cols	Levels	Grid points	Δt
WRF-ARW	400×440	55	\simeq 9.7 million	18 sec
Meso-NH	225 imes 270	52	$\simeq 3.1$ million	6 sec
MOLOCH	502×614	50	$\simeq 15.4$ million	30 sec

$$\alpha_{model} \stackrel{def}{=} \frac{\text{Grid points(model)}}{\Delta t(\text{model})}$$

 $\alpha_{WRF} \simeq \alpha_{MNH} \simeq \alpha_{MOL}$ \rightarrow runtime depends on model numerics, not on model's domain extent

EGU 2020 5-8/May/2020 | Sharing Geoscience Online Hi-res

Final remarks: CP ensemble runtime

Average runtime for a 36-hour long simulation on ECMWF Cray XC40 supercomputer

X-axis: # of nodes/cores, Y-axis: runtime (secs)

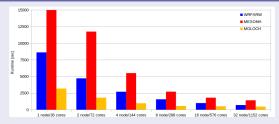


Figure: Number of nodes/cores is doubled at every step

- MOLOCH is the fastest model (~ 3X faster than WRF
 for number of cores ≤ 144, then ~ 2X faster)
- Meso-NH is the slowest model (better scalability)

EGU 2020 5-8/May/2020 | Sharing Geoscience Online