

Does soil disturbance result in soil carbon losses?

- A case study on bioturbation effects of wild boar

Axel Don¹, Christina Hagen¹, Erik Grüneberg², Cora Vos¹

1) Thünen Institute for Climate-Smart Agriculture 2) Thünen Institute for Forestecology

06.05.2020 EGU session SSS5.2

Paradigm: Soil disturbance causes soil carbon losses

- It is generally assumed that soil disturbance enhances soil carbon turnover.
- This resulted in conclusions such as "no tillage enhances soil carbon stocks".
- > Wild boar are grubbing and disturbing soils.
- Wild boar populations are drastiacally increasing in many parts of the world.
- However, there is little field experimental evidence that soil disturbance itself reduces soil carbon stocks on midterm and on long term.

Soil disturbance by wild boar:

Does it lead to enhanced mineralisation?

The study aims at quatifying the effect of soil disturbance (bioturbation) by wild boar on soil organic carbon in forest soils on mid-term.

The study shall provide direct experimental evidence from different forest field sites.

Simulating wild boar bioturbation in the field

Bioturbation by wild boar

Simulated bioturbation

We simulated the disturbance from wild boar using a stick.

23 plots in two areas

Area Braunschweig Decidiuous plot

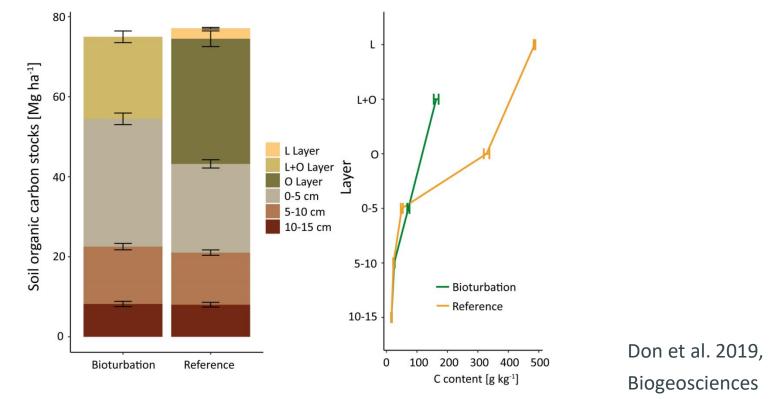
Area Braunschweig Coniferious plot

Area Eberswalde Coniferious plot

- Each plots consited of a disturbed subplot (right site) and and undisturbed reference subplot (left site).
- At the bioturbation subplots soil was disturbed once per year over a period of six years.

Sampling after 6 years

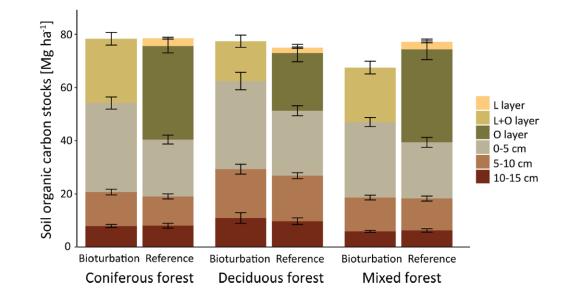
Reference subplot



Wild boar treatment subplot

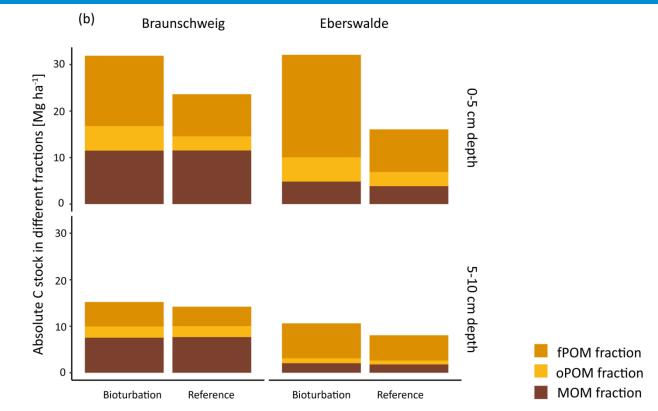
surface L-layer O-layer 10 cm 15 cm 15 cm 15 cm 15 cm

- Soils were sampled down to 15 cm depth using 25x25 cm metal frames with 5 replicates per subplot
- Organic layers were separated
- Bioturbation plots were sampled mass equivalent to the reference plots (see Don et al. 2019, Biogeosciences)


Effect of bioturbation on soil carbon stocks

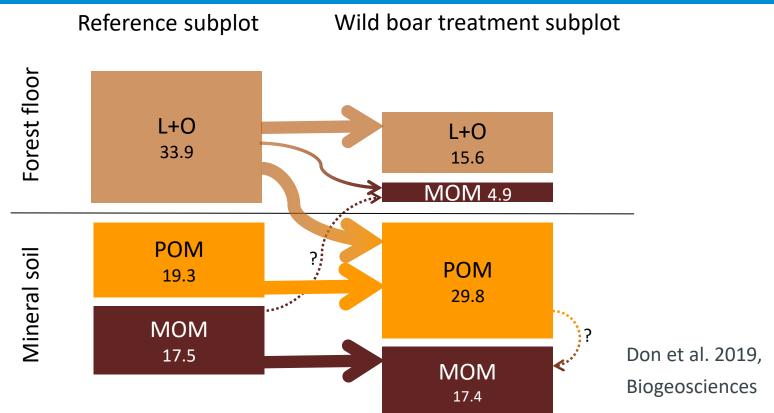
- ✓ Six years of bioturbation did **not** reduce soil carbon stocks in the wild boar treatment plots.
- ✓ Soil organic carbon depth gradients were less steep due to the bioturbation (right site)

Bioturbation effects in different forest types

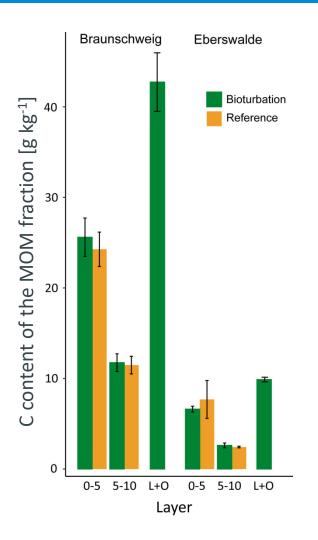


- There was no difference of wild boar bioturbation treatements in different forest types.
- ✓ In coniferous forests, deciduous forest and mixed forest bioturbation did not result in soil carbon losses.

Don et al. 2019, Biogeosciences


Carbon fractions in the mineral soil

- ✓ There was more particulate organic carbon (POM) in the mineral soil due to bioturbation.
- ✓ Mineral associated organic carbon (MOM) in the mineral soil did **not change** due to bioturbation


Summary carbon flow

- ✓ Parts of the organic layer ended up as particulate organic carbon (POM) in the mineral soil.
- Additional carbon was stabilised as mineral associated organic carbon (MOM) in the forest floor.

C saturation of mineral surfaces?

- ✓ Bioturbation increased the C content of the mineral associated carbon fraction.
- The was no evident carbon saturation of mineral surfaces, even though the soils were sandy
- Bioturbation did increase the stabilised mineral associated carbon.

Conclusions

Bioturbation did not result in soil carbon losses.

 In contrast, soil carbon was stabilised,
e.g. via moving carbon from the forest floor to the mineral soil.

□ The paradigm that soil disturbance leads to soil carbon losses has to be reconsidered.

For more details see Don et al. 2019, Biogeosciences 16, 4145–4155, https://doi.org/10.5194/bg-16-4145-2019